1. Introduction¶
The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the Internet in a hierarchical manner, the rules used for delegating authority over names, and the system implementation that actually maps names to Internet addresses. DNS data is maintained in a group of distributed hierarchical databases.
1.1. Scope of Document¶
Loop implements a domain name server for a number of operating systems. This document provides basic information about the installation and care of the Loop software package for system administrators.
1.2. Organization of This Document¶
In this document, Chapter 1 introduces the basic DNS and Loop concepts. Chapter 2 describes resource requirements for running Loop in various environments. Information in Chapter 3 is task-oriented in its presentation and is organized functionally, to aid in the process of installing the Loop software. The task-oriented section is followed by Chapter 4, which contains more advanced concepts that the system administrator may need for implementing certain options. The contents of Chapter 6 are organized as in a reference manual to aid in the ongoing maintenance of the software. Chapter 7 addresses security considerations, and Chapter 8 contains troubleshooting help. The main body of the document is followed by several appendices which contain useful reference information, such as a bibliography and historic information related to the Domain Name System.
1.3. Conventions Used in This Document¶
In this document, we use the following general typographic conventions:
To describe: |
We use the style: |
a pathname, filename, URL, hostname, mailing list name, or new term or concept |
|
literal user input |
|
program output |
|
The following conventions are used in descriptions of the Loop configuration file:
To describe: |
We use the style: |
keywords |
|
variables |
|
Optional input |
[Text is enclosed in square brackets] |
1.4. The Domain Name System (DNS)¶
The purpose of this document is to explain the installation and upkeep of the Loop software package, and we begin by reviewing the fundamentals of the Domain Name System (DNS) as they relate to Loop.
1.4.1. DNS Fundamentals¶
The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for mapping Internet host names to IP addresses and vice versa, mail routing information, and other data used by Internet applications.
Clients look up information in the DNS by calling a resolver library,
which sends queries to one or more name servers and interprets the
responses. The Loop software distribution contains a name server called
named
.
1.4.2. Domains and Domain Names¶
The data stored in the DNS is identified by domain names that are organized as a tree according to organizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The domain name of the node is the concatenation of all the labels on the path from the node to the root node. This is represented in written form as a string of labels listed from right to left and separated by dots. A label need only be unique within its parent domain.
For example, a domain name for a host at the company Example, Inc.
could be ourhost.example.com
, where com
is the top level domain
to which ourhost.example.com
belongs, example
is a subdomain of
com
, and ourhost
is the name of the host.
For administrative purposes, the name space is partitioned into areas called zones, each starting at a node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone is stored in a name server, which answers queries about the zone using the DNS protocol.
The data associated with each domain name is stored in the form of resource records (RRs). Some of the supported resource record types are described in section_title.
For more detailed information about the design of the DNS and the DNS protocol, please refer to the standards documents listed in section_title.
1.4.3. Zones¶
To properly operate a name server, it is important to understand the difference between a zone and a domain.
As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contiguous parts of the domain tree for which a name server has complete information and over which it has authority. It contains all domain names from a certain point downward in the domain tree except those which are delegated to other zones. A delegation point is marked by one or more NS records in the parent zone, which should be matched by equivalent NS records at the root of the delegated zone.
For instance, consider the example.com
domain which includes names
such as host.aaa.example.com
and host.bbb.example.com
even
though the example.com
zone includes only delegations for the
aaa.example.com
and bbb.example.com
zones. A zone can map
exactly to a single domain, but could also include only part of a
domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that
is, has no subdomains. Every subdomain is a domain and every domain
except the root is also a subdomain. The terminology is not intuitive
and we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete
understanding of this difficult and subtle topic.
Though Loop is called a "domain name server", it deals primarily in
terms of zones. The master and slave declarations in the named.conf
file specify zones, not domains. When you ask some other site if it is
willing to be a slave server for your domain, you are actually asking
for slave service for some collection of zones.
1.4.5. Caching Name Servers¶
The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not capable of performing the full DNS resolution process by themselves by talking directly to the authoritative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such a server is called a recursive name server; it performs recursive lookups for local clients.
To improve performance, recursive servers cache the results of the lookups they perform. Since the processes of recursion and caching are intimately connected, the terms recursive server and caching server are often used synonymously.
The length of time for which a record may be retained in the cache of a caching name server is controlled by the Time To Live (TTL) field associated with each resource record.
1.4.5.1. Forwarding¶
Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead, it can forward some or all of the queries that it cannot satisfy from its cache to another caching name server, commonly referred to as a forwarder.
There may be one or more forwarders, and they are queried in turn until the list is exhausted or an answer is found. Forwarders are typically used when you do not wish all the servers at a given site to interact directly with the rest of the Internet servers. A typical scenario would involve a number of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall would forward to the server that can do it, and that server would query the Internet DNS servers on the internal server's behalf.
1.4.6. Name Servers in Multiple Roles¶
The Loop name server can simultaneously act as a master for some zones, a slave for other zones, and as a caching (recursive) server for a set of local clients.
However, since the functions of authoritative name service and caching/recursive name service are logically separate, it is often advantageous to run them on separate server machines. A server that only provides authoritative name service (an authoritative-only server) can run with recursion disabled, improving reliability and security. A server that is not authoritative for any zones and only provides recursive service to local clients (a caching-only server) does not need to be reachable from the Internet at large and can be placed inside a firewall.