Lease User Manual
Release 1.99.6.20250811025749.965cadab44

Banu Systems Private Limited

Aug 11, 2025

1 Programs

1.1

1.2

dhcpd --- DHCP server
Synopsis
Description
Operation

Command line
Options
UDP and TCP ports
Configuration

1.1.1
1.1.2
1.1.3
114
1.1.5
1.1.6
1.1.7

1.1.8

1.1.9

1.1.10 Files
1.1.11 See also
1.1.12 Copyright
dhclient --- DHCP client
Synopsis
Description
Operation

Command line
Options
Options available for DHCPv6 only
Modifying default file locations
UDP and TCP ports
Configuration

1.2.1
1.2.2
1.2.3
1.24
1.2.5

1.2.6
1.2.7
1.2.8

1.2.9

1.1.7.1
1.1.7.2
1.1.7.3
1.1.74
OMAPI
1.1.8.1
1.1.8.2
1.1.8.3
1.1.8.4
1.1.8.5
Signals

1.25.1
1.2.5.2

OMAPI
1.2.8.1

Environment variables

BOOTP support

Options

The lease object

The host object

The group object
The control object

The failover-state object

The control object

Subnets
Leasetime

CONTENTS

1.3

1.4

1.5

1.2.10 Files o o o e 24

1211 Seealso 25
1212 Copyright 25
dhclient-script --- DHCP client network configuration script . . . 25
1.3.1 Description 0. 25
132 Hooks 25
133 Operation 26
1331 MEDIUM 26
1332 PREINIT 26
1333 BOUND......... 26
1334 RENEW 27
1335 REBIND......... 27
1.33.6 REBOOT 27
1337 EXPIRE 27
1338 FAIL 27
1339 STOP 28
13310 RELEASE 28
13311 NBI 28
1.3.3.12 TIMEOUT 28
134 Bugs 28
135 Seealso....... o 28
136 Copyright 28
dhcrelay-DHCPrelayagent 29
141 Synopsis e 29
1.42 Description e 29
143 Operation 29
144 Options e 29
1441 Protocolselection 29
1442 Specitying DHCPv4/BOOTP servers 29
1.4.43 Options available for both DHCPv4 and DHCPv6 . .. 30
1.4.4.4 Options available for DHCPv4only 30
1.4.45 Options available for DHCPv6only 32
145 Seealso. 32
146 Bugs e 32
147 Copyright 33
omshell --- OMAPI commandshell 33
151 Synopsis 33
152 Description o o 33
153 Localand remoteobjects, 33
154 Openingaconnection 33
155 Creatinglocalobjects 34
1.5.6 Associating local and remote objects 34
1.5.7 Viewingaremoteobject 34
1.5.8 Modifying aremoteobject oo oL 35
159 Newremoteobjects L. 36
1.5.10 Resetting attributeso oo Lo 37
1.5.11 Refreshingobjects 38
1512 Deletingobjects 38

1513 Help 38

1514 Seealso. 38
1515 Copyright 39
2 Configuration and data 41
2.1 dhcpd.conf --- DHCP server configuration 41
211 Description o e 41
212 Examples. 42
213 Addresspools o 45
214 Dynamic address allocation 46
2.1.5 IP address conflict prevention L. 47
21.6 DHCPfailover. e 47
21.6.1 Failoverstartup, 48
2.1.6.2 Configuring failover 49

217 Clientclassing L oo 55
2171 Subclasses 55
2.1.7.2 Per-class limits on dynamic address allocation 57
2173 Spawningclasses 57
2.1.74 Combining match, match if, and spawn with 58

218 DynamicDNSupdates 58
219 The DNSUPDATEscheme 58
2.19.1 Dynamic DNS UPDATE security 60

2110 Events e e e 63
2.1.11 Declarations e e e 63
2112 Allowanddeny L. 66
2.1.12.1 allow, deny, and ignoreinscope 66
2.1.12.2 allow and deny within pool declarations 69

2.1.13 Parameters e e e e e e e e 72
2.1.14 Setting parameter values using expressions 91
2.1.15 Reservedleases 92
2.1.16 References i i i e e e 92
2117 Files e e e 92
2118 Seealso e 93
2119 Copyright 93
2.2 dhcpd.leases --- DHCP leasedatabase 93
221 Description oo oo o000 93
222 Format e e 93
2.2.3 Common statements for lease declarations 94
2231 Dates e 94
2232 Generalvariables 95
2233 DDNSVariables 95

224 Executablestatements 95
2.2.5 The DHCPv4 lease declaration 96
2.2.6 The DHCPv6 lease (IA) declaration 98
227 The failover peer state declaration 99
228 Files e e 99
229 Seealso e e 100
2210 Copyright 100

2.3

24

2.5

2.6

dhclient.conf --- DHCP client configuration 100

231 Description, oo o000 100
232 Protocoltiming 100
2.3.3 DHCPvé6leaseselection 102
234 Leaserequirementsandrequests 102
235 DynamicDNSupdates 104
23.6 Optionmodifiers 104
237 Leasedeclarations., 105
2.3.8 Aliasdeclarations e 108
239 Otherdeclarations 108
2310 Example 111
2311 Files. o e e e e 112
2312 Seealso e e 112
2313 Copyright 112
dhclient.leases --- DHCP client lease database 112
241 Description L L o o e 112
242 Files e e e 113
243 Seealso e e 113
244 Copyright 113
dhcp-eval --- DHCP conditional evaluation 113
251 Description L o o e 113
2,52 Conditional behavior 113

2521 Theifstatement 113

2522 Theswitchstatement 114
253 Booleanexpressions 115
254 Dataexpressions00, 116
25,5 Numericexpressions 119
256 Actionexpression 120
257 DynamicDNSupdates 122
258 Seealso e 122
259 Copyright o 122
dhcp-options -—-DHCPoptions 122
2.6.1 Description o o o000 122
262 Optionstatements. 122
2.6.3 Setting option values using expressions 123
264 Standard DHCPv4options. 123
2.6.,5 Relay agent informationoption 138
26.6 Client FQDNsuboptions 139
2.6.7 NetWare/IP suboptions 141
2.6.8 Standard DHCPv6options. 141
2.69 Accessing DHCPv6relayoptions 148
2.6.10 Definingnew options, 149

2.6.10.1 Boolean 149

26102 Integer o L. 150

26103 IPvdaddress, 150

26104 IPvbaddress 150

26105 Text o 150

26.10.6 Datastring, 151

2.6.10.7 Domainlist

2.6.10.8 Encapsulation,
26109 Arrays. e
261010 Records L oo
2.6.11 Vendor encapsulated options
2612 Seealso
2613 Copyright o

3 Release notes
31 Leasel99.6 e e
3.2 Lease version numbering scheme
3.2.1 Stable and development versions
33 Leasebranches o .
34 HistoryofLease

4 License

5 Data and privacy

Index

Vi

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Warning

This document is still a work-in-progress. Large parts of it may be inaccurate, and
it may mention programs, features and configuration options that do not exist in
Lease. This warning will be removed when the manual is known to be correct.

CONTENTS 1

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2 CONTENTS

CHAPTER
ONE

PROGRAMS

The following sections document programs that are part of the Lease software distri-
bution.

1.1 dhcpd --- DHCP server

1.1.1 Synopsis

dhepd [-p <port>][-f][-d][-q][[-t] | [-T]] [[-4] | [-6]] [-406 <port>][-s <server>]
[-cf <config-file>] [-1f <lease-file> | [-pf <pid-file>] [--no-pid] [-user <user>] [-group
<group>] [-chroot <dir> | [-tf <trace-output-file>] [-play <trace-playback-file>] [<if0>

I[... <ifN>]

dhcpd --version

1.1.2 Description

dhcpd implements the Dynamic Host Configuration Protocol (DHCP) and the Inter-
net Bootstrap Protocol (BOOTP). DHCP allows hosts on a TCP/IP network to request
and be assigned IP addresses, and also to discover information about the network to
which they are attached. BOOTP provides similar functionality, with certain restric-
tions.

1.1.3 Operation

The DHCP protocol allows a host which is unknown to the network administrator
to be automatically assigned a new IP address out of a pool of IP addresses for its
network. In order for this to work, the network administrator allocates address pools
in each subnet and enters them into the dhcpd. conf (5) file.

There are two versions of the DHCP protocol DHCPv4 and DHCPv6. At startup the
server may be started for one or the other via the -4 or -6 arguments.

On startup, dhepd reads the dhcpd. conf (5) file and stores a list of available ad-
dresses on each subnet in memory. When a client requests an address using the DHCP
protocol, dhcpd allocates an address for it. Each client is assigned a lease, which ex-
pires after an amount of time chosen by the administrator (by default, one day). Before
leases expire, the clients to which leases are assigned are expected to renew them in

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

order to continue to use the addresses. Once a lease has expired, the client to which
that lease was assigned is no longer permitted to use the leased IP address.

In order to keep track of leases across system reboots and server restarts, dhcpd keeps
a list of leases it has assigned in the dhcpd. leases (5) file. Before dhcpd grants a
lease to a host, it records the lease in this file and makes sure that the contents of the
tile are flushed to disk. This ensures that even in the event of a system crash, dhcpd
will not forget about a lease that it has assigned. On startup, after reading the dhcpd.
conf (5) file, dhepd reads the dhcpd. leases (5) file to refresh its memory about
what leases have been assigned.

New leases are appended to the end of the dhcpd. Ieases (5) file. In order to pre-
vent the file from becoming arbitrarily large, from time to time dhcpd creates a new
dhcpd. leases (5) file from its in-core lease database. Once this file has been written
to disk, the old file is renamed dhcpd. leases~, and the new file is renamed dhcpd.
leases. If the system crashes in the middle of this process, whichever dhcpd.
leases (5) file remains will contain all the lease information, so there is no need
for a special crash recovery process.

BOOTP support is also provided by this server. Unlike DHCP, the BOOTP protocol
does not provide a protocol for recovering dynamically-assigned addresses once they
are no longer needed. It is still possible to dynamically assign addresses to BOOTP
clients, but some administrative process for reclaiming addresses is required. By de-
fault, leases are granted to BOOTP clients in perpetuity, although the network admin-
istrator may set an earlier cutoff date or a shorter lease length for BOOTP leases if that
makes sense.

BOOTP clients may also be served in the old standard way, which is to simply pro-
vide a declaration in the dhcpd. conf (5) file for each BOOTP client, permanently
assigning an address to each client.

Whenever changes are made to the dhcpd. conf (5) file, dhcpd must be restarted. To
restart dhcpd, send a SIGTERM signal to the process ID contained in /run/lease/
dhcpd.pid, and then re-invoke dhepd. Because the DHCP server database is not as
lightweight as a BOOTP database, dhcpd does not automatically restart itself when it
sees a change to the dhcpd. conf (5) file.

1.1.4 Command line

The names of the network interfaces on which dhepd should listen for broadcasts
may be specified on the command line. This should be done on systems where dhcpd
is unable to identify non-broadcast interfaces, but should not be required on other
systems. If no interface names are specified on the command line dhcpd will identify
all network interfaces which are up, eliminating non-broadcast interfaces if possible,
and listen for DHCP broadcasts on each interface.

4 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.1.5 Options

-4

Run as a DHCP (IPv4) server. This is the default and cannot be combined with
—6.

Run as a DHCPv6 (IPv6) server. This cannot be combined with —4.

—-406 <port>

-P

=S

—-q

Participate in the DHCPv4 over DHCPv6 protocol specified by RFC 7341. This
associates a DHCPv4 and a DHCPv6 server to allow the v4 server to receive v4
requests that were encapsulated in a v6 packet. Communication between the
two servers is done on a pair of UDP sockets bound to ::1 <port> and <port> + 1.
Both servers must be launched using the same <port> argument.

<port>

The UDP port number on which dhepd should listen. If unspecified dhepd uses
the default port of 67. This is mostly useful for debugging purposes.

<address>

Specify an address or host name to which dhepd should send replies rather than
the broadcast address (255.255.255.255). This option is only supported in IPv4.

Force dhcpd to run as a foreground process instead of as a daemon in the back-
ground.

Send log messages to the standard error descriptor. This can be useful for de-
bugging, and also where a complete log of all DHCP activity must be kept
but syslogd is not reliable or otherwise cannot be used. Normally, dhcpd
will log all output using the syslog(3) function with the log facility set to
LOG_DAEMON. Note that ~d implies - (i.e., the daemon will not fork itself
into the background).

Be quiet at startup. This suppresses the printing of the entire copyright message
during startup.

Test the configuration file. The server tests the dhcpd. conf (5) file for correct
syntax, but will not attempt to perform any network operations. This can be
used to test a new configuration file automatically before installing it.

Test the lease file. The server tests the dhcpd. leases (5) file for correct syntax,
but will not attempt to perform any network operations. This can be used to test
a new lease file automatically before installing it.

1.1.

dhcpd --- DHCP server 5

https://datatracker.ietf.org/doc/html/rfc7341.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

—user <user>

setuid(2) to <user> after completing privileged operations, such as creating
sockets that listen on privileged ports. This also causes the lease file to be owned
by <user>.

—group <group>
setgid(2) to <group> after completing privileged operations such as creating
sockets that listen on privileged ports. This also causes the lease file to be owned
by <group>.

—chroot <directory>
chroot (2) to <directory>.

Warning

This may occur before or after reading the configuration files depending on
whether ——ecarly-chroot is used.

——early—-chroot

If ~chroot is used, then perform the chroot (2) before reading the configura-
tion files.

-tf <trace-file>

Enable trace recording by specifying a file into which the entire startup state of
the server and all the transactions it processes are logged.

Note

This option can be useful for submitting bug reports. If dhcpd crashes often,
it can be run with -t £, and then when the process crashes, the trace file will
contain all the transactions that led up to it crashing. The problem can be
debugged afterwards with -play.

-play <trace—-file>

Enable trace playback by specifying a file from which the entire startup state of
the DHCP server and all the transactions it processed are read. —~play must be
specified with an alternate lease file, using -1 1 so that the DHCP server doesn't
wipe out any existing lease file with its test data. The DHCP server will refuse to
operate in playback mode unless an alternate lease file is specified.

—-—version
Print version number and exit.

—cf <config-file>
Specify path to the dhcpd. conf (5) configuration file.

6 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note

Because of the importance of using the same lease database at all times when
running dhepd in production, it is suggested that this option be used for test-
ing lease files or database files in a non-production environment.

=1f <lease—-file>

Specify path to the dhcpd. Ieases (5) leases file.

Note

Because of the importance of using the same lease database at all times when
running dhepd in production, it is suggested that this option be used for test-
ing lease files or database files in a non-production environment.

—pf <pid-file>
Specify path to a file where the dhcpd process ID is written.

——no-pid
Disable writing process ID files. By default, dhcpd will write a process ID file. If
it is invoked with this option it will not check for an existing dhepd process.

1.1.6 UDP and TCP ports

During operations the server may use multiple UDP and TCP ports to provide differ-
ent functions. Which ports are used depends on the configuration in use. The follow-
ing should provide an idea of what ports may be used.

Normally a DHCPv4 server will open a raw UDP socket to receive and send most
DHCPv4 packets. It also opens a fallback UDP socket for use in sending unicast pack-
ets. Normally these will both use the well known port number for BOOTPS.

For each DHCPv4 failover peer listed in the configuration file there will be a TCP
socket listening for connections on the ports specified in the configuration file. When
the peer connects, there will be another socket for the established connection. For the
established connection the side (primary or secondary) opening the connection will
use a random port.

For DHCPvV6 the server opens a UDP socket on the well known dhcpvé-server port.

The server opens an ICMP socket for doing ICMP Echo (ping) requests to check if
addresses are in use.

If there is an omapi-port statement in the configuration file, then the server will open
a TCP socket on that port to listen for OMAPI connections. When something connects
another port will be used for the established connection.

When DNS UPDATE is used, the server will open a v4 and a v6 UDP socket on random
ports. If the server is not configured to do DNS UPDATEs, the ports will never be
opened (ddns-update-style set to none in the configuration file).

1.1. dhcpd --- DHCP server 7

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.1.7 Configuration

The syntax of the dhcpd. conf (5) file is discussed separately. This section should
be used as an overview of the configuration process, and the dhcpd. conf (5) docu-
mentation should be consulted for detailed reference information.

1.1.7.1 Subnets

dhcpd needs to know the subnet numbers and netmasks of all subnets for which it
will be providing service. In addition, in order to dynamically allocate addresses, it
must be assigned one or more ranges of addresses on each subnet which it can in turn
assign to client hosts as they boot. Thus, a very simple configuration providing DHCP
support might look like this:

subnet 239.252.197.0 netmask 255.255.255.0 {
range 239.252.197.10 239.252.197.250;

}

Multiple address ranges may be specified like this:

subnet 239.252.197.0 netmask 255.255.255.0 {
range 239.252.197.10 239.252.197.107;
range 239.252.197.113 239.252.197.250;

}

If a subnet will only be provided with BOOTP service and no dynamic address as-
signment, the range clause can be left out entirely, but the subnet statement must

appear.

1.1.7.2 Lease time

DHCP leases can be assigned almost any duration from 0 seconds to infinity. What
lease duration makes sense for any given subnet, or for any given installation, will
vary depending on the kinds of hosts being served.

For example, in an office environment where systems are added from time to time and
removed from time to time, but move relatively infrequently, it might make sense to
allow lease durations of a month or more. In a final test environment on a manufactur-
ing floor, it may make more sense to assign a maximum lease duration of 30 minutes
--- enough time to go through a simple test procedure on a network appliance before
packaging it up for delivery.

It is possible to specify two lease durations: the default duration that will be assigned
if a client doesn't ask for any particular lease duration, and a maximum lease duration.
These are specified as clauses to the subnet command:

subnet 239.252.197.0 netmask 255.255.255.0 {
range 239.252.197.10 239.252.197.107;
default-lease-time 600;
max—lease—-time 7200;

8 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This particular subnet declaration specifies a default lease time of 600 seconds (ten
minutes), and a maximum lease time of 7200 seconds (two hours). Other common
values are 86400 (one day), 604800 (one week) and 2592000 (30 days).

Each subnet need not have the same lease --- in the case of an office environment and
a manufacturing environment served by the same DHCP server, it might make sense
to have widely disparate values for default and maximum lease times on each subnet.

1.1.7.3 BOOTP support

Each BOOTP client must be explicitly declared in the dhcpd. conf (5) file. A very
basic client declaration will specify the client network interface's hardware address
and the IP address to assign to that client. If the client needs to be able to load a
boot file from the server, that file's name must be specified. A simple BOOTP client
declaration might look like this:

host haagen {
hardware ethernet 08:00:2b:4c:59:23;
fixed-address 239.252.197.9;
filename "/tftpboot/haagen.boot";

1.1.7.4 Options

DHCP (and also BOOTP with Vendor Extensions) provide a mechanism whereby the
server can provide the client with information about how to configure its network in-
terface (e.g., subnet mask), and also how the client can access various network services
(e.g., DNS, IP routers, and so on).

These options can be specified on a per-subnet basis, and for BOOTP clients, also on a
per-client basis. In the event that a BOOTP client declaration specifies options that are
also specified in its subnet declaration, the options specified in the client declaration
take precedence. A reasonably complete DHCP configuration might look something
like this:

subnet 239.252.197.0 netmask 255.255.255.0 {
range 239.252.197.10 239.252.197.250;
default-lease-time 600 max—lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 239.252.197.255;
option routers 239.252.197.1;
option domain-name-servers 239.252.197.2, 239.252.197.3;
option domain-name "example.org";

}

A BOOTP host on that subnet that needs to be in a different domain and use a different
DNS nameserver might be declared as follows:

1.1. dhcpd --- DHCP server 9

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

host haagen {
hardware ethernet 08:00:2b:4c:59:23;
fixed—address 239.252.197.9;
filename "/tftpboot/haagen.boot";
option domain-name-servers 192.5.5.1;
option domain-name "example.com";

}

A more complete description of the configuration file syntax is provided in dhcpd.
conf (5). A list of DHCP options are provided in dhcp-options (5).

1.1.8 OMAPI

dhcpd provides the capability to modify some of its configuration while it is running,
without stopping it, modifying its database files, and restarting it. This capability
is currently provided using OMAPI (Object Management Application Programming
Interface) --- an API for manipulating remote objects. OMAPI clients connect to the
dhcpd process using TCP/IP, authenticate, and can then examine the server's current
status and make changes to it.

Rather than implementing the underlying OMAPI protocol directly, user programs
should use the dhcpctl (5) APl or omapi (5) itself. dhcpctl (5) is a wrapper that
handles some of the housekeeping chores that OMAPI does not do automatically.

Warning

The above paragraph about dhcpctl (5) and omapi (5) should be replaced with
a discussion of using omshell (1).

OMAPI exports objects, which can then be examined and modified. The DHCP server
exports the following objects: lease, host, failover-state and group. Each object has a
number of methods that are provided: lookup, create, and destroy. In addition, it is
possible to look at attributes that are stored on objects, and in some cases to modify
those attributes.

omshell (1) is a program that provides an interactive way to connect to, query, and
possibly change dhepd's state via OMAPI.

Warning

This section has to be rewritten, or moved to the developer documentation.

10 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.1.8.1 The lease object

Leases can't currently be created or destroyed, but they can be looked up to examine
and modify their state.

Leases have the following attributes:
state <integer> [lookup, examine]

* 1 =free

® 2 =active

* 3 = expired

* 4 =released

¢ 5=abandoned

* 6 =reset

e 7 =backup

* 8 =reserved

* 9 =bootp
ip-address <data> [lookup, examine]

The IP address of the lease.

dhcp-client-identifier <data> [lookup, examine, update]

The client identifier that the client used when it acquired the lease. Not all
clients send client identifiers, so this may be empty.

client-hostname <data> [examine, update]

The value the client sent in the host-name option.
host <handle> [examine]

The host declaration associated with this lease, if any.
subnet <handle> [examine]

The subnet object associated with this lease (the subnet object is not cur-
rently supported).

pool <handle> [examine]

The pool object associated with this lease (the pool object is not currently
supported).

billing-class <handle> [examine]

The handle to the class to which this lease is currently billed, if any (the
class object is not currently supported).

hardware-address <data> [examine, update]

1.1. dhcpd --- DHCP server 11

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The hardware address (chaddr) field sent by the client when it acquired its
lease.

hardware-type <integer> [examine, update]

The type of the network interface that the client reported when it acquired
its lease.

ends <time> [examine]

The time when the lease's current state ends, as understood by the client.
tstp <time> [examine]

The time when the lease's current state ends, as understood by the server.
tsfp <time> [examine]

The adjusted time when the lease's current state ends, as understood by the
failover peer (if there is no failover peer, this value is undefined). Generally
this value is only adjusted for expired, released, or reset leases while the
server is operating in partner-down state, and otherwise is simply the value
supplied by the peer.

atsfp <time> [examine]

The actual tsfp value sent from the peer. This value is forgotten when a
lease binding state change is made, to facilitate retransmission logic.

cltt <time> [examine]

The time of the last transaction with the client on this lease.

1.1.8.2 The host object

Hosts can be created, destroyed, looked up, examined and modified. If a host dec-
laration is created or deleted using OMAPI, that information will be recorded in the
dhcpd. leases (5) file. It is permissible to delete host declarations that are declared
in the dhcpd. conf (5) file.

Hosts have the following attributes:
name <data> [lookup, examine, modify]

The name of the host declaration. This name must be unique among all
host declarations.

group <handle> [examine, modify]
The named group associated with the host declaration, if there is one.
hardware-address <data> [lookup, examine, modify]

The link-layer address that will be used to match the client, if any. Only
valid if hardware-type is also present.

hardware-type <integer> [lookup, examine, modify]

12 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The type of the network interface that will be used to match the client, if
any. Only valid if hardware-address is also present.

dhcp-client-identifier <data> [lookup, examine, modify]

The dhcp-client-identifier option that will be used to match the client, if
any.

ip-address <data> [examine, modify]
A fixed IP address which is reserved for a DHCP client that matches this

host declaration. The IP address will only be assigned to the client if it is
valid for the network segment to which the client is connected.

statements <data> [modify]

A list of statements in the format of the dhcpd. conf (5) file that will be
executed whenever a message from the client is being processed.

known <integer> [examine, modify]

If non-zero, indicates that a client matching this host declaration will be
treated as known in pool permit lists. If zero, the client will not be treated
as known.

1.1.8.3 The group object

Named groups can be created, destroyed, looked up, examined and modified. If
a group declaration is created or deleted using OMAPI, that information will be
recorded in the dhcpd. Ieases (5) file. It is permissible to delete group declarations
that are declared in the dhcpd. conf (5) file.

Named groups currently can only be associated with hosts --- this allows one set of
statements to be efficiently attached to more than one host declaration.

Groups have the following attributes:
name <data>

The name of the group. All groups that are created using OMAPI must
have names, and the names must be unique among all groups.

statements <data>

A list of statements in the format of the dhcpd. conf (5) file that will be
executed whenever a message from a client whose host declaration refer-
ences this group is processed.

1.1.8.4 The control object

The control object allows dhecpd to be shutdown gracefully. If the server is doing
failover with another peer, it will make a clean transition into the shutdown state and
notify its peer, so that the peer can go into partner down, and then record the "re-
cover" state in the lease file so that when the server is restarted, it will automatically
resynchronize with its peer.

1.1. dhcpd --- DHCP server 13

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

On shutdown the server will also attempt to cleanly shut down all OMAPI connec-
tions. If these connections do not go down cleanly after five seconds, they are shut
down preemptively. It can take as much as 25 seconds from the beginning of the shut-
down process to the time that the server actually exits.

To shut the server down, open its control object and set the state attribute to 2.

1.1.8.5 The failover-state object

The failover-state object is the object that tracks the state of the failover protocol as
it is being managed for a given failover peer. The failover object has the following
attributes (please see dhcpd. conf (5) for descriptions of these attributes):

name <data> [examine]

Indicates the name of the failover peer relationship, as described in the
server's configuration file.

partner-address <data> [examine]
Indicates the failover partner's IP address.
local-address <data> [examine]

Indicates the IP address that is being used by the DHCP server for this
failover pair.

partner-port <data> [examine]

Indicates the TCP port on which the failover partner is listening for failover
protocol connections.

local-port <data> [examine]

Indicates the TCP port on which the DHCP server is listening for failover
protocol connections for this failover pair.

max-outstanding-updates <integer> [examine]

Indicates the number of updates that can be outstanding and unacknowl-
edged at any given time, in this failover relationship.

mclt <integer> [examine]
Indicates the maximum client lead time in this failover relationship.
load-balance-max-secs <integer> [examine]

Indicates the maximum value for the secs field in a client request before
load balancing is bypassed.

load-balance-hba <data> [examine]
Indicates the load balancing hash bucket array for this failover relationship.
local-state <integer> examine, modify

Indicates the present state of the DHCP server in this failover relationship.
Possible values for state are:

14 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1 - startup

e 2 -normal

¢ 3 - communications interrupted
* 4 - partner down

¢ 5 - potential conflict

® 6 -recover

* 7 -paused

¢ 8-shutdown

* 9 -recover done

¢ 10 - resolution interrupted
¢ 11 - conflict done

e 254 - recover wait

In general it is not a good idea to make changes to this state. However,
in the case that the failover partner is known to be down, it can be useful
to set the DHCP server's failover state to partner down. At this point the
DHCP server will take over service of the failover partner's leases as soon
as possible, and will give out normal leases, not leases that are restricted
by MCLIT. If the DHCP server is put into the partner-down state when the
other DHCP server is not in the partner-down state, but is not reachable,
IP address assignment conflicts are possible, even likely. Once a server has
been put into partner-down mode, its failover partner must not be brought
back online until communication is possible between the two servers.

partner-state <integer> [examine]
Indicates the present state of the failover partner.
local-stos <integer> [examine]

Indicates the time at which the DHCP server entered its present state in this
failover relationship.

partner-stos <integer> [examine]
Indicates the time at which the failover partner entered its present state.
hierarchy <integer> [examine]

Indicates whether the DHCP server is primary or secondary in this failover
relationship.

Possible values are:
¢ 0 - primary
* 1-secondary

last-packet-sent <integer> [examine]

1.1. dhcpd --- DHCP server

15

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Indicates the time at which the most recent failover packet was sent by this
DHCP server to its failover partner.

last-timestamp-received <integer> [examine]

Indicates the timestamp that was on the failover message most recently
received from the failover partner.

skew <integer> [examine]

Indicates the skew between the failover partner's clock and this DHCP
server's clock.

max-response-delay <integer> [examine]

Indicates the time in seconds after which, if no message is received from
the failover partner, the partner is assumed to be out of communication.

cur-unacked-updates <integer> [examine]

Indicates the number of update messages that have been received from the
failover partner but not yet processed.

1.1.9 Signals

Certain UNIX signals cause dhcpd to take specific actions:

SIGTERM
Shuts down the DHCP server.

Signals can be sent using the ki11 (1) program. The result of sending any other
signals to the server is undefined.

1.1.10 Files
/etc/lease/dhcpd.conf

The configuration file for the dhepd program. See dhcpd. conf (5) for
more details.

/var/lib/lease/dhcpd. leases

The DHCP leases file. See dhcpd. leases (5) for more details.
/var/lib/lease/dhcpd. leases~

Old DHCP leases file.
/var/lib/lease/dhcpd6.leases

The DHCPv6 leases file. See dhcpd. leases (5) for more details.
/var/lib/lease/dhcpd6.leases~

Old DHCPV6 leases file.
/run/lease/dhcpd.pid

The default process ID file.

16 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.1.11 See also

dhclient (8), dhcrelay(8), dhcpd.conf (5), dhcp-options (5), dhcpd.
leases (5), omshell (1)

1.1.12 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2017 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

1.2 dhclient --- DHCP client

1.2.1 Synopsis

dhclient [-4 | -6][-S][-N[-N...]][-T[-T...]1]1[-P[-P...]]-R][-i][-I][-406
<port>][-D <LLILLT>][-p <port>][-d][-df <duid-lease-file>] [-e <VAR>*=*<value>
11-q1[-1][-r | -x][-lf <lease-file>] [-pf <pid-file>] [--no-pid] [-cf <config-file>] [
-sf <script-file>] [-s <server-addr>][-g <relay>][-n][-nw] [-w] [--dad-wait-time
<seconds>] [-v] [--version] [<if0> [... <ifN>]]

1.2.2 Description

dhclient configures one or more network interfaces using the DHCP Protocol,
BOOTP protocol, or if these protocols fail, by statically assigning an address.

1.2.3 Operation

The DHCP protocol allows a host to contact a central server which maintains a list of IP
addresses which may be assigned on one or more subnets. A DHCP client may request
an address from this pool, and then use it on a temporary basis for communication on
network. The DHCP protocol also provides a mechanism whereby a client can learn
important details about the network to which it is attached, such as the location of a
default router, the location of a name server, and so on.

There are two versions of the DHCP protocol --- DHCPv4 and DHCPv6. At startup
the client may be started for one or the other via the ~4 or -6 options.

On startup, dhclient reads the dhclient. conf (5) for configuration instructions.
It then gets a list of all the network interfaces that are configured in the current system.
For each interface, it attempts to configure the interface using the DHCP protocol.

In order to keep track of leases across system reboots and server restarts, dhclient
keeps a list of leases it has been assigned in the dhclient.leases (5) file. On
startup, after reading the dhclient.conf (5) file, dhclient reads the dhclient.
leases (5) file to refresh its memory about what leases it has been assigned.

When a new lease is acquired, it is appended to the end of the dhclient.leases (5)
tile. In order to prevent the file from becoming arbitrarily large, from time to

1.2. dhclient --- DHCP client 17

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

time dhclient creates a new dhclient.leases (5) file from its in-core lease
database. The old version of the dhclient.leases (5) file is retained under the
name dhclient.leases~ until the next time dhclient rewrites the database.

Old leases are kept around in case the DHCP server is unavailable when dhclient
is first invoked (generally during the initial system boot process). In that event, old
leases from the dhclient.leases (5) file which have not yet expired are tested,
and if they are determined to be valid, they are used until either they expire or until
the DHCP server becomes available.

A mobile host which may sometimes need to access a network on which no DHCP
server exists may be preloaded with a lease for a fixed address on that network. When
all attempts to contact a DHCP server have failed, dhclient will try to validate the
static lease, and if it succeeds, will use that lease until it is restarted.

A mobile host may also travel to some networks on which DHCP is not available
but BOOTP is. In that case, it may be advantageous to arrange with the network
administrator for an entry on the BOOTP database, so that the host can boot quickly
on that network rather than cycling through the list of old leases.

1.2.4 Command line

The names of the network interfaces that dhclient should attempt to configure may
be specified on the command line. If no interface names are specified on the com-
mand line dhelient will normally identify all network interfaces, eliminating non-
broadcast interfaces if possible, and attempt to configure each interface.

It is also possible to specify interfaces by name in the dhclient.conf (5) file. If
interfaces are specified in this way, then the client will only configure interfaces that
are either specified in the configuration file or on the command line, and will ignore
all other interfaces.

The client normally prints no output during its startup sequence. It can be made to
emit verbose messages displaying the startup sequence events until it has acquired an
address by supplying the -v command line argument. In either case, the client logs
messages using the syslog (3) facility.

1.2.5 Options

-4
Use the DHCPv4 protocol to obtain an IPv4 address and configuration parame-
ters. This is the default and cannot be combined with -6.

Use the DHCPv6 protocol to obtain whatever IPv6 addresses are available along
with configuration parameters. It cannot be combined with —4. The -s, -7,
-P, =N, and -D arguments provide more control over aspects of the DHCPv6
processing.

18 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note

It is not recommended to mix queries of different types together or even to
share the lease file between them.

—-406 <port>

-nw

—-q

-V

'

-n

Participate in the DHCPv4 over DHCPv6 protocol specified by RFC 7341. This
associates a DHCPv4 and a DHCPV6 client to allow the v4 client to send v4 re-
quests encapsulated in a v6 packet. Communication between the two clients is
done on a pair of UDP sockets bound to ::1 <port> and <port> + 1. Both clients
must be launched using the same <port> argument.

Try to get a lease once. On failure exit with status 2. In DHCPv®6 this sets the
maximum duration of the initial exchange to timeout from dhclient.conf (5)
with a default of 60 seconds.

Force dhclient to run as a foreground process. Normally the DHCP client will
run in the foreground until is has configured an interface at which time it will
revert to running in the background.

Become a daemon immediately (nowait) rather than waiting until an IP address
has been acquired.

Be quiet at startup. This is the default.

Enable verbose log messages.

Continue running even if no broadcast interfaces were found. Normally
dhclient will exit if it isn't able to identify any network interfaces to config-
ure. On laptop computers and other computers with hot-swappable I/O buses,
it is possible that a broadcast interface may be added after system startup. This
argument can be used to cause the client not to exit when it doesn't find any such
interfaces. The omshell (1) program can then be used to notify the client when
a network interface has been added or removed, so that the client can attempt to
configure an IP address on that interface.

Do not configure any interfaces. This is most likely to be useful in combination
with the —w argument.

—-e <VAR>=<value>

Define additional environment variables for the environment in which
dhclient-script (8) executes. Multiple —e arguments may be specified on
the command line.

1.2. dhclient --- DHCP client 19

https://datatracker.ietf.org/doc/html/rfc7341.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

-r

-X

-P

=S

-g

-i

Release the current lease and stop the running dhclient process as pre-
viously recorded in the PID file. When shutdown via this method,
dhclient-script (8) will be executed with the specific reason for calling the
script set.

Note

The client normally doesn't release the current lease as this is not required
by the DHCP protocol but some cable ISPs require their clients to notify the
server if they wish to release an assigned IP address.

Without releasing the current lease, stop the running dhclient process
as previously recorded in the PID file. When shutdown via this method
dhclient-script (8) will be executed with the specific reason for calling the
script set.

<port>

The UDP port number on which dhelient should listen and transmit. If un-
specified, dhclient uses the default port of 68. This is mostly useful for debug-
ging purposes. If a different port is specified on which the client should listen
and transmit, the client will also use a different destination port --- one less than
the specified <port>.

<server—-address>

Specify the server IP address or fully qualified domain name to use as a destina-
tion for DHCP protocol messages before dhclient has acquired an IP address.
Normally, dhclient transmits these messages to 255.255.255.255 (the IP limited
broadcast address). Overriding this is mostly useful for debugging purposes.
This feature is not supported in DHCPv6 mode (-6).

<relay>

Set the giaddr field of all packets to the relay IP address simulating a relay agent.
This is for testing purposes only and should not be expected to work in any
consistent or useful way.

Use a DUID with DHCPv4 clients. If no DUID is available in the lease file, one
will be constructed and saved. The DUID will be used to construct an RFC 4361
style client ID that will be included in the client's messages. This client ID can be
overridden by setting a client ID in the configuration file. Overridding the client
ID in this fashion is discouraged.

Use the standard DNS UPDATE scheme from RFC 4701 and RFC 4702.

——version

Print version number and exit.

20

Chapter 1. Programs

https://datatracker.ietf.org/doc/html/rfc4361.html
https://datatracker.ietf.org/doc/html/rfc4701.html
https://datatracker.ietf.org/doc/html/rfc4702.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.2.5.1 Options available for DHCPv6 only

-S

Use Information-request to get only stateless configuration parameters (i.e.,
without address). This implies —6. It also doesn't rewrite the lease database.

Ask for IPv6 temporary addresses, one set per —~T argument. This implies -6
and also disables the normal address query. See —NV to restore it.

Enable IPv6 prefix delegation. This implies -6 and also disables the normal ad-
dress query. See I to restore it. Multiple prefixes can be requested with multiple
—P arguments.

Note

Only one requested interface is allowed.

Require that responses include all of the items requested by any -~, -7, or -P
options. Normally even if the command line includes a number of these the
client will be willing to accept the best lease it can even if the lease doesn't include
all of the requested items. This option causes the client to only accept leases that
include all of the requested items.

Warning

Using this option may prevent the client from using any leases it receives if
the servers aren't configured to supply all of the items.

-D <LL|LLT>

Override the default when selecting the type of DUID to use. By default,
DHCPv6 dhclient creates an identifier based on the link-layer address (DUID-
LL) if it is running in stateless mode (with -5, not requesting an address), or it
creates an identifier based on the link-layer address plus a timestamp (DUID-
LLT) if it is running in stateful mode (without -5, requesting an address). When
DHCPv4 is configured to use a DUID using -1 option the default is to use a
DUID-LLT. -D overrides these default, with a value of either L.L or LLT.

Restore normal address query for IPv6. This implies —6. It is used to restore
normal operation after using —T or —P. Multiple addresses can be requested with
multiple -V arguments.

——dad-wait-time <seconds>

Specify maximum time (in seconds) that the client should wait for the duplicate
address detection (DAD) to complete on an interface. This value is propagated

1.2. dhclient --- DHCP client 21

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

to the dhclient—-script (8) in a dad_wait_time environment variable. If
any of the IPv6 addresses on the interface are tentative (DAD is in progress), the
script will wait for the specified number of <seconds> for DAD to complete. If
the script ignores this variable, then the parameter has no effect.

1.2.5.2 Modifying default file locations

The following options may be used to modify the locations a client uses for its files.
For example, they can be particularly useful if /var or /run have not been mounted
when the dhclient process is started.

—cf <config-file>
Specify path to the dhclient.conf (5) configuration file.

—-df <duid-lease—-file>

Specify path to a secondary lease file. If the primary lease file doesn't contain
a DUID, this file will be searched. The DUID read from the secondary will be
written to the primary. This option can be used to allow an IPv4 instance of the
client to share a DUID with an IPv6 instance. After starting one of the instances
the second can be started with this option pointing to the lease file of the first
instance. There is no default. If no file is specified no search is made for a DUID
should one not be found in the main lease file.

=1f <lease—-file>

Specify path to the dhclient. leases (5) leases file.

—pf <pid-file>
Specify path to a file where the dhclient process ID is written.

——no-pid
Disable writing process ID files. By default, dhclient will write a process ID
file. If it is invoked with this option it will not check for an existing dhclient
process.

—-sf <script-file>

Specify path to the dhclient-script (8) network configuration script in-
voked by dhclient when it gets a lease.

1.2.6 UDP and TCP ports

During operations the client may use multiple UDP and TCP ports to provide different
functions. Which ports are used depends on the configuration in use. The following
should provide an idea of what ports may be used.

Normally a DHCPv4 client will open a raw UDP socket to receive and send most
DHCPv4 packets. It also opens a fallback UDP socket for use in sending unicast pack-
ets. Normally these will both use the well known port number for BOOTPC.

For DHCPvV6 the client opens a UDP socket on the well known client port and a
fallback UDP socket on a random port for use in sending unicast messages. Unlike
DHCPv4 the well known socket doesn't need to be opened in raw mode.

22 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

If there is an omapi-port statement in the configuration file, then the client will open
a TCP socket on that port to listen for OMAPI connections. When something connects
another port will be used for the established connection.

When DNS UPDATE is used, the client will open a v4 and a v6 UDP socket on random
ports. These ports are not opened unless/until the client first attempts to do an update.
If the client is not configured to do DNS UPDATEs, the ports will never be opened.

1.2.7 Configuration

See dhclient.conf (5) for the syntax of dheclient's configuration file.

1.2.8 OMAPI

dhclient provides the capability to control some aspects of it while it is running,
without stopping it. This capability is currently provided using OMAPI (Object Man-
agement Application Programming Interface) --- an API for manipulating remote ob-
jects. OMAPI clients connect to the dhelient process using TCP/IP, authenticate,
and can then examine the client's current status and make changes to it.

Rather than implementing the underlying OMAPI protocol directly, user programs
should use the dhcpctl (5) APl or omapi (5) itself. dhcpctl (5) is a wrapper that
handles some of the housekeeping chores that OMAPI does not do automatically.

Warning

The above paragraph about dhcpctl (5) and omapi (5) should be replaced with
a discussion of using omshell (1).

Most things you'd want to do with the client can be done directly using the
omshell (1) command, rather than having to write a special program.

Warning

This section has to be rewritten, or moved to the developer documentation.

1.2.8.1 The control object

The control object allows dhelient to be shutdown gracefully, releasing all leases
that it holds and deleting any DNS records it may have added. It also allows the
DHCP client to be paused --- this unconfigures any interfaces the client is using. It
can then be restarted, which causes it to reconfigure those interfaces. The client would
typically be paused prior to going into hibernation or sleep on a laptop computer. It
would then be resumed after power comes back. This allows PC cards to be shutdown
while the computer is hibernating or sleeping, and then reinitialized to their previous
state once the computer comes out of hibernation or sleep.

The control object has one attribute --- the state attribute.

1.2. dhclient --- DHCP client 23

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

¢ To shutdown the client, its state attribute must be set to 2. It will automatically
do a DHCPRELEASE.

* To pause the client, its state attribute must be set to 3.

e To resume the client, its state attribute must be set to 4.

1.2.9 Environment variables

The following environment variables may be defined to override the builtin defaults
for file locations.

Note

The use of the corresponding command-line options will ignore the corresponding
environment variable settings.

PATH_DHCLIENT_CONF

Path to the dhclient.conf (5) configuration file.
PATH_DHCLIENT_DB

Path to the dhclient.leases (5) database.
PATH_DHCLIENT_PID

Path to the process ID file.
PATH_DHCLIENT_SCRIPT

Path to the dhclient-script (8) file.

1.2.10 Files

/usr/bin/dhclient-script

The DHCP client network configuration script. See
dhclient-script (8) for more details.

/etc/lease/dhclient.conf

The configuration file for the dhclient program. See dhclient.
conf (5) for more details.

/var/lib/lease/dhclient.leases

The leases file. See dhclient.leases (5) for more details.
/var/lib/lease/dhclient.leases~

Old leases file.
/run/lease/dhclient.pid

The default process ID file.

24 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.2.11 See also

dhcpd (8), dhcrelay (8), dhclient-script (8), dhclient.conf (5),
dhclient.leases (5), dhcp-eval (5), omshell (1)

1.2.12 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2017 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

1.3 dhclient-script --- DHCP client network config-
uration script

1.3.1 Description

The DHCP client network configuration script is invoked from time to time by
dhclient (8). This script is used by the DHCP client to set each interface's initial
configuration prior to requesting an address, to test the address once it has been of-
fered, and to set the interface's final configuration once a lease has been acquired. If no
lease is acquired, the script is used to test predefined leases, if any, and is also called
once if no valid lease can be identified.

This script is not meant to be customized by the end user. If local customizations
are needed, they should be possible using the enter and exit hooks provided (see the
section on Hooks for details). These hooks will allow the user to override the default
behaviour of the client in creating a /etc/resolv.conf file.

1.3.2 Hooks

When the client script starts, it first defines a shell function, make_resolv_conf,
which is later used to create the /etc/resolv.conf file. To override the default
behaviour, redefine this function in the enter hook script.

On after defining the make_resolv_conf function, the client script checks for the
presence of an executable /etc/lease/dhclient-enter-hooks script, and if
present, it invokes the script inline, using bash (1)'s . command. The entire envi-
ronment documented in the section on Operation is available to this script, which may
modify the environment if needed to change the behaviour of the script. If an error
occurs during the execution of the script, it can set the exit_status variable to a
nonzero value, and dheclient-script will exit with that error code immediately
after the client script exits.

After all processing has completed, dhclient-script checks for the presence of an
executable /etc/lease/dhclient-exit-hooks script, which if present is invoked
using bash (1)'s . command. The exit status of dhclient-script will be passed
to dhclient-exit-hooks in the exit_status shell variable, and will always be

1.3. dhclient-script --- DHCP client network configuration script 25

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

0 if the script succeeded at the task for which it was invoked. The rest of the envi-
ronment as described previously for dhclient—-enter—hooks is also present. The
dhclient-exit-hooks script can modify the value of exit_status to change the
exit status of dhclient-script.

1.3.3 Operation

When dhclient (8) needs to invoke the client configuration script, it defines a set
of variables in the environment, and then invokes dheclient-script. In all cases,
$Sreason is set to the name of the reason why the script has been invoked. The fol-
lowing reasons are currently defined: MEDIUM, PREINIT, BOUND, RENEW, REBIND,
REBOOT, EXPIRE, FAIL, STOP, RELEASE, NBI, and TIMEOUT.

1.3.3.1 MEDIUM

The DHCP client is requesting that an interface's media type be set. The interface name
is passed in the $interface, and the media type is passed in $medium.

1.3.3.2 PREINIT

The DHCP client is requesting that an interface be configured as required in order
to send packets prior to receiving an actual address. For clients which use the BSD
socket library, this means configuring the interface with an IP address of 0.0.0.0 and
a broadcast address of 255.255.255.255. For other clients, it may be possible to simply
configure the interface up without actually giving it an IP address at all. The interface
name is passed in $interface, and the media type in $medium.

If an IP alias has been declared in dhclient.conf (5), its address will be passed in
Salias_ip_address, and that IP address alias should be deleted from the interface,
along with any routes to it.

1.3.3.3 BOUND

The DHCP client has done an initial binding to a new address. The new IP address is
passed in $new_ip_address, and the interface name is passed in $interface. The
media type is passed in $medium. Any options acquired from the server are passed
using the option name described in dhcp-options (5), except that dashes (-) are
replaced by underscores (_) in order to make valid shell variables, and the variable
names start with new_. So, for example, the new subnet mask would be passed in
$new_subnet_mask. Options from a non-default universe will have the universe
name prepended to the option name, for example $new_dhcp6_server_id. The
options that the client explicitly requested via a PRL or ORO option are passed with
the same option name as above but prepended with requested_ and with a value of
1, for example requested_subnet_mask=1. No such variable is defined for options
not requested by the client or options that don't require a request option, such as the
IP address (x_ip_address) or expiration time («_expiry).

Before actually configuring the address, dhclient-script™ should somehow ARP
for it and exit with a non-zero status if it receives a reply. In this case, the client will
send a DHCPDECLINE message to the server and acquire a different address. This

26 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

may also be done in the RENEW, REBIND, or REBOOT states, but is not required, and
indeed may not be desirable.

When a binding has been completed, a lot of network parameters are likely to need
to be set up. Anew /etc/resolv.conf file needs to be created, using the values of
$new_domain_name and $new_domain_name_servers (which may list more than
one server, separated by spaces). A default route should be set using Snew_routers,
and static routes may need to be set up using $new_static_routes.

If an IP address alias has been declared, it must be set up here. The alias IP address
will be written as $alias_ip_address, and other DHCP options that are set for the
alias (e.g., subnet mask) will be passed in variables named as described previously
except prefixed with $alias_ instead of $new_. Care should be taken that the alias
IP address not be used if it is identical to the bound IP address ($new_ip_address),
since the other alias parameters may be incorrect in this case.

1.3.3.4 RENEW

When a binding has been renewed, the script is called as in BOUND, except that in
addition to all the variables whose names are prefixed with $new_and $requested_,
there is another set of variables whose names are prefixed with $old_. Persistent
settings that may have changed need to be deleted; for example, if a local route to the
bound address is being configured, the old local route should be deleted. If the default
route has changed, the old default route should be deleted. If the static routes have
changed, the old ones should be deleted. Otherwise, processing can be done as with
BOUND.

1.3.3.5 REBIND

The DHCP client has rebound to a new DHCP server. This can be handled as with
RENEW, except that if the IP address has changed, the ARP table should be cleared.
1.3.3.6 REBOOT

The DHCP client has successfully reacquired its old address after a reboot. This can
be processed as with BOUND.

1.3.3.7 EXPIRE

The DHCP client has failed to renew its lease or acquire a new one, and the lease has
expired. The IP address must be relinquished, and all related parameters should be
deleted, as in RENEW and REBIND.

1.3.3.8 FAIL

The DHCP client has been unable to contact any DHCP servers, and any leases that
have been tested have not proved to be valid. The parameters from the last lease tested
should be deconfigured. This can be handled in the same way as EXPIRE.

1.3. dhclient-script --- DHCP client network configuration script 27

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.3.3.9 STOP

dhclient (8) has been informed to shut down gracefully. dhclient-script
should unconfigure or shutdown the interface as appropriate.

1.3.3.10 RELEASE

dhclient (8) has been executed using the —r command line argument, indicating
that the administrator wishes it to release its lease(s). dhelient-script should un-
configure or shutdown the interface.

1.3.3.11 NBI

NBI stands for No-Broadcast-Interfaces. dhclient (8) was unable to find any inter-
faces upon which it believed it should commence DHCP. What dhclient-script
should do in this situation is entirely up to the implementor.

1.3.3.12 TIMEOUT

The DHCP client has been unable to contact any DHCP servers. However, an old lease
has been identified, and its parameters have been passed in as with BOUND. The client
configuration script should test these parameters and, if it has reason to believe they
are valid, should exit with a value of 0. If not, it should exit with a non-zero value.

The usual way to test a lease is to set up the network as with REBIND (since this
may be called to test more than one lease) and then ping the first router defined in
$routers. If a response is received, the lease must be valid for the network to which
the interface is currently connected. It would be more complete to try to ping all of the
routers listed in $Snew_routers, as well as those listed in $Snew_static_routes,
but current scripts do not do this.

1.3.4 Bugs

If more than one interface is being used, there's no obvious way to avoid
clashes between server-supplied configuration parameters; for example, the stock
dhclient-script rewrites /etc/resolv.conf. If more than one interface is be-
ing configured, /etc/resolv.conf will be repeatedly initialized to the values pro-
vided by one server, and then the other. Assuming the information provided by both
servers is valid, this shouldn't cause any real problems, but it could be confusing.

1.3.5 See also

dhclient (8),dhcpd(8),dhclient.conf (5),dhclient.leases (5)

1.3.6 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2012,2014,2016 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2009-2010 by Internet Systems Consortium, Inc. ("ISC").

28 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Copyright (c) 2004-2005 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

1.4 dhcrelay - DHCP relay agent

1.4.1 Synopsis

dhcrelay [4][-d][-q][-a][-D][-p <port>][-c <count>][-A <length>] [
-pf <pid-file>] [=-no-pid] [-m <append | replace | forward | discard> | [-i <interface0> [...
-i <interfaceN>]] [-iu <interface0> [... -iu <interfaceN> |] [-id <interfaceO> [... -id
<interfaceN>]] [-U <interface>]| <serverO> [... <serverN>]

dhcrelay-6[-d][-q][-I1][-p <port>][-c <count>][-pf <pid-file>] [--no-pid | [-s
<subscriber-id>] -1 <lower0> [... -1 <lowerN>]| -u <upper0> [... -u <upperN>]

1.4.2 Description

dhcrelay relays DHCP and BOOTP requests, from a subnet to which no DHCP
server is directly connected, to one or more DHCP servers on other subnets. It sup-
ports both DHCPv4/BOOTP and DHCPv6 protocols.

1.4.3 Operation

dhcrelay listens for DHCPv4 or DHCPv6 queries from clients or other relay agents
on one or more interfaces, passing them along to upstream servers or relay agents as
specified on the command line. When a reply is received from upstream, it is multicast
or unicast back downstream to the source of the original request.

1.4.4 Options

1.4.4.1 Protocol selection
-6
Run dhcrelay as a DHCPv6 relay agent. Incompatible with —4.

Run dhcrelay as a DHCPv4/BOOTP relay agent. This is the default mode
of operation, so the argument is not necessary, but may be specified for clarity.
Incompatible with —6.

1.4.4.2 Specifying DHCPv4/BOOTP servers

In DHCPv4 mode, a list of one or more server addresses must be specified on the
command line, to which DHCP/BOOTP queries should be relayed.

1.4. dhcrelay - DHCP relay agent 29

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.4.4.3 Options available for both DHCPv4 and DHCPv6

-c <count>

Specify the maximum hop count. When forwarding packets, dhcrelay discards
packets which have reached a hop count of <count>. The default value is 10.
Maximum value that is allowed is 255.

-d
Force dhcrelay to run as a foreground process.
-p <port>
Listen and transmit on port <port>. This is mostly useful for debugging pur-
poses. The default is port 67 for DHCPv4/BOOTP, and port 547 for DHCPveé.
-9

Quiet mode. Prevents dhcrelay from printing its network configuration on
startup.

-pf <pid-file>
Specify path to a file where the dhcrelay process ID is written.

——no-pid

Disable writing process ID files. By default, dhcrelay will write a process ID
file.

1.4.4.4 Options available for DHCPv4 only

-a
Append an agent option field to each request before forwarding it to the server.
Agent option fields in responses sent from servers to clients will be stripped be-
fore forwarding such responses back to the client. The agent option field will
contain two agent options: the Circuit ID suboption and the Remote ID sub-
option. Currently, the Circuit ID will be the printable name of the interface on
which the client request was received. The client supports inclusion of a Remote
ID suboption as well, but this is not used by default.

—A <length>
Specify the maximum packet size to send to a DHCPv4/BOOTP server. This

might be done to allow sufficient space for addition of relay agent options while
still fitting into the Ethernet MTU size.

Drop packets from upstream servers if they contain Relay Agent Information
options that indicate they were generated in response to a query that came via a
different relay agent. If this option is not specified, such packets will be relayed
anyway.

-i <ifname>

Listen for DHCPv4/BOOTP traffic on interface <ifname>. Multiple interfaces
may be specified by using more than one -1 option. If no interfaces are specified

30 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

on the command line, dhcrelay will identify all network interfaces, eliminating
non-broadcast interfaces if possible, and attempt to listen on all of them.

<ifname>

Specifies an upstream network interface --- an interface from which replies from
servers and other relay agents will be accepted. Multiple interfaces may be spec-
ified by using more than one —iu option. This argument is intended to be used
in conjunction with one or more -1 or —id arguments.

<ifname>

Specifies a downstream network interface --- an interface from which requests
from clients and other relay agents will be accepted. Multiple interfaces may be
specified by using more than one —id option. This argument is intended to be
used in conjunction with one or more -1 or —iu arguments.

-m <append|replace|forward|discard>

Control the handling of incoming DHCPv4 packets which already contain relay
agent options. If such a packet does not have giaddr set in its header, the DHCP
standard requires that the packet be discarded. However, if giaddr is set, the relay
agent may handle the situation in four ways:

* it may append its own set of relay options to the packet, leaving the sup-
plied option field intact;

¢ it may replace the existing agent option field;
¢ it may forward the packet unchanged; or,

e it may discard it.

-U <ifname>

Enables the addition of a RFC 3527 compliant link selection suboption for clients
directly connected to the relay. This RFC allows a relay to specify two different
IP addresses --- one for the server to use when communicating with the relay
(giaddr), the other for choosing the subnet for the client (the suboption). This can
be useful if the server is unable to send packets to the relay via the address used
for the subnet.

When enabled, dhcrelay will add an agent option (as per —a above) that in-
cludes the link selection suboption to the forwarded packet. This will only be
done to packets received from clients that are directly connected to the relay (i.e.
giaddr is zero). The address used in the suboption will be that of the link upon
which the inbound packet was received (which would otherwise be used for gi-
addr). The value of giaddr will be set to that of interface <ifname>.

Only one interface should be marked in this fashion. Currently enabling this
option on an interface causes the relay to process all DHCP traffic similar to the
—1 option, in the future we may split the two more completely.

This option is off by default. Note that enabling this option automatically enables
the —a option.

Using options such as -m replace or -m discard on relays upstream from

1.4. dhcrelay - DHCP relay agent 31

https://datatracker.ietf.org/doc/html/rfc3527.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

one using —U can pose problems. The upstream relay will wipe out the initial
agent option containing the link selection while leaving the re-purposed giaddr
value in place, causing packets to go astray.

1.4.4.5 Options available for DHCPv6 only

-I

=S

-u

Force use of the DHCPv6 Interface-ID option. This option is automatically sent
when there are two or more downstream interfaces in use, to disambiguate be-
tween them. The - I option causes dhcrelay to send the option even if there is
only one downstream interface.

<subscriber—-id>

Add an option with the specified <subscriber-id> into the packet. This feature is
for testing rather than production as it will put the same <subscriber-id> into the
packet for all clients.

[<address>%] <ifname> [#<index>]

Specifies the lower network interface for DHCPv6 relay mode --- the interface
on which queries will be received from clients or from other relay agents. At
least one —1 option must be included in the command line when running in
DHCPv6 mode. The interface name <ifname> is a mandatory parameter. The
link address can be specified by <address>%; if it isn't, dhcrelay will use the
first non-link-local address configured on the interface. The optional #<index>
parameter specifies the interface index.

[<address>%] <ifname>

Specifies the upper network interface for DHCPv6 relay mode --- the interface to
which queries from clients and other relay agents should be forwarded. At least
one —u option must be included in the command line when running in DHCPv6
mode. The interface name <ifname> is a mandatory parameter. The destination
unicast or multicast address can be specified by <address>%; if not specified, the
relay agent will forward to the DHCPv6 All_ DHCP_Relay_Agents_and_Servers
multicast address.

It is possible to specify the same interface with different addresses more than once,
and even, when the system supports it, to use the same interface as both upper and
lower interfaces.

1.4.5 See also

dhclient (8), dhcpd (8)

1.4.6 Bugs

Using the same interface on both upper and lower sides may cause loops, so when
running this way, the maximum hop count should be set to a low value.

The loopback interface is not (yet) recognized as a valid interface.

32

Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.4.7 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2016 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1997-2003 by Internet Software Consortium.

1.5 omshell --- OMAPI command shell

1.5.1 Synopsis

omshell

1.5.2 Description

omshell provides an interactive way to connect to, query, and possibly change a
DHCP server's state via OMAPI --- the Object Management API. By using OMAPI
and omshell, changes can be made to the state of a DHCP server while the server is
running. omshell provides a way of accessing OMAPL

OMAPI is simply a communications mechanism that allows manipulation of objects.
In order to actually use omshell, there should be an understanding of what ob-
jects are available and how to use them. Documentation for OMAPI objects can be
found in the documentation for the server that provides them, in the dhcpd (8) and
dhclient (8) manual pages.

1.5.3 Local and remote objects

Throughout this document, there are references to local and remote objects. Local
objects are ones created in omshell with the new command. Remote objects are ones
on the DHCP server --- leases, hosts, and groups that the DHCP server knows about.
Local and remote objects are associated together to enable viewing and modification
of object attributes. Also, new remote objects can be created to match local objects.

1.5.4 Opening a connection

omshell is started from the command line. Once omshell is started, there are several
commands that can be executed:

server <address>

This command specifies the IP address of the DHCP server to connect to.
If it is not specified, the default server is 127.0.0.1 (localhost).

port <number>

This command specifies the OMAPI port number of the DHCP server. By
default, this is 7911.

key <name> <secret>

1.5. omshell --- OMAPI command shell 33

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This command specifies the TSIG key to use to sign OMAPI transac-
tions. <name> is the name of a key defined in dhcpd. conf (5) using
the omapi-key statement. <secret> is the secret key generated using
dnssec-keygen (1) (from the Loop DNS distribution), or using another
key generation program.

connect

This command starts the OMAPI connection to the server provided by the
server command.

1.5.5 Creating local objects

Any object defined in OMAPI can be created, queried, and/or modified. The object
types available to OMAPI are defined in dhcpd (8) and dhclient (8). When using
omshell, objects are first defined locally, manipulated as desired, and then associated
with an object on the server. Only one object can be manipulated at a time. To create a
local object, the following command is used:

new <object-type>
<object-type> is one of group, host, or lease.

At this point, a new object would have been created on which properties can be set. For
example, if a new lease object was created with new lease, any of a lease's attributes
can be set using the following command:

set <attribute-name> = <value>

Attribute names are defined in dhcpd(8) and dhclient (8). Values
should be quoted if they are strings. So, to set a lease's IP address, the
following command may be used:

> set ip-address 192.168.4.50

1.5.6 Associating local and remote objects

At this point, the server can be queried for information about this lease, by using the
following command:
open

Now, the local lease object that was created --- and IP address set for --- is associated
with the corresponding lease object on the DHCP server. All of the lease attributes
from the DHCP server are now also the attributes on the local object, and will be
shown in omshell.

1.5.7 Viewing a remote object

To query a lease of address 192.168.4.50 and find out its attributes, after connecting to
the server, the following commands may be used:

34 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

> new lease

This creates a new local lease object.

> set ip-address = 192.168.4.50

This sets the local object's IP address to be 192.168.4.50.

> open

Now, if a lease with that IP address exists, all the information the DHCP server has
about that particular lease is shown. Any data that isn't readily printable text will
show up in colon-separated hexadecimal values. In this example, output from the
server for the entire transaction might look like this:

> new "lease"

obj: lease

> set ip-address = 192.168.4.50

obj: lease

ip—address = c0:a8:04:32

> open

obj: lease

ip-address = c0:a8:04:32

state = 00:00:00:02
dhcp-client-identifier = 01:00:10:a4:b2:36:2c
client-hostname = "wendelina"

subnet = 00:00:00:06

pool = 00:00:00:07

hardware—address = 00:10:a4:02:36:2c
hardware-type = 00:00:00:01

ends = dc:d9:0d:3b

starts = 5c¢:9f:04:3b

tstp = 00:00:00:00

tsfp = 00:00:00:00

cltt = 00:00:00:00

As can be seen above, the IP address is represented in hexadecimal, as are the starting
and ending times of the lease.

1.5.8 Modifying a remote object

Attributes of remote objects are updated by using the set command as before, and then
issuing an update command. The set command sets the attributes on the current local
object, and the update command pushes those changes out to the server.

Continuing with the previous example, output from the server may look as follows if
the corresponding set and update commands are executed:

1.5. omshell --- OMAPI command shell 35

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

> set client-hostname = "something-else"
obj: lease

ip—address = c0:a8:04:32

state = 00:00:00:02
dhcp-client—-identifier = 01:00:10:a4:b2:36:2c
client-hostname = "something-else"
subnet = 00:00:00:06

pool = 00:00:00:07

hardware—-address = 00:10:a4:b2:36:2c
hardware-type = 00:00:00:01

ends = dc:d9:0d:3b

starts = 5c:9£:04:3b

tstp = 00:00:00:00

tsfp = 00:00:00:00

cltt = 00:00:00:00

> update

obj: lease

ip-address = c0:a8:04:32

state = 00:00:00:02
dhcp-client-identifier = 01:00:10:a4:b2:36:2c
client-hostname = "something-else"
subnet = 00:00:00:06

pool = 00:00:00:07

hardware—-address = 00:10:a4:02:36:2c
hardware-type = 00:00:00:01

ends = dc:d9:0d:3b

starts = 5c¢:9f:04:3b

tstp = 00:00:00:00

tsfp = 00:00:00:00

cltt = 00:00:00:00

1.5.9 New remote objects

New remote objects are created much in the same way that existing server objects
are modified. A local object is created using the new command, attributes are set as
desired, and then the remote object is created with the same properties by using the
following command:

create

Now a new object exists on the DHCP server which matches the properties that
were set on the local object. Objects created via OMAPI are saved into the dhcpd.
leases (5) file.

For example, the following shows how a new host with the IP address of 192.168.4.40
is created:

36 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

> new host

obj: host

> set name = "some—host"

obj: host

name = "some-host"

> set hardware-—-address = 00:80:c7:84:b1:94
obj: host

name = "some-host"

hardware—address = 00:80:c7:84:b1:94

> set hardware-type =1

obj: host

name = "some-host"

hardware—-address = 00:80:c7:84:b1:94
hardware-type = 1

> set ip-address = 192.168.4.40

obj: host

name = "some-host
hardware—-address = 00:80:c7:84:b1:94
hardware-type = 1

ip—-address = c0:a8:04:28

> create

obj: host

name = "some-host"

hardware—-address = 00:80:c7:84:b1:94
hardware-type = 00:00:00:01
ip—-address = c0:a8:04:28

nw

The dhcpd. leases (5) file would then have an entry like this in it:

host some-host {
dynamic;
hardware ethernet 00:80:c7:84:b1:94;
fixed-address 192.168.4.40;

The dynamic; statement is used to indicate that this host entry did not come from
dhcpd. conf (5),but was created dynamically via OMAPIL.

1.5.10 Resetting attributes

An attribute may be removed from an object by using the unset command. Once an
attribute has been unset, the update command must be used to update the remote
object. So, if the host "some-host" from the previous example should not have a
static IP address anymore, the commands run in omshell would look like this:

obj: host
name = "some-host"
(continues on next page)

1.5. omshell --- OMAPI command shell 37

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

hardware—address = 00:80:c7:84:b1:94
hardware-type = 00:00:00:01
ip—address = c0:a8:04:28

> unset ip-address

obj: host

name = "some-host"

hardware—address = 00:80:c7:84:b1:94
hardware-type = 00:00:00:01
ip-address = <null>

Warning

Include the result of running the unset command as well in the output above.

1.5.11 Refreshing objects

A local object may be refreshed with the current remote object's properties using the
refresh command. This is useful for objects that change periodically, like leases, to see
if they have been updated. This isn't particularly useful for hosts.

1.5.12 Deleting objects

Any remote object that can be created can also be destroyed. This is done by creating
a new local object, setting attributes, associating the local and remote object using the
open command, and then using the remove command. If the host "some-host " from
before was created in error, it could be removed using the following command:

obj: host

name = "some-host"

hardware—-address = 00:80:c7:84:01:94
hardware-type = 00:00:00:01
ip-address = c0:a8:04:28

> remove

obj: <null>

1.5.13 Help

The help command prints out all of the commands available in omshell with some
syntax pointers.

1.5.14 See also
dhcpctl (3), dhcpd(8),dhclient (8), dhcpd.conf (5),dhclient.conf (5)

38 Chapter 1. Programs

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

1.5.15 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2012,2014 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2004,2009 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2001-2003 by Internet Software Consortium.

1.5. omshell --- OMAPI command shell 39

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

40 Chapter 1. Programs

CHAPTER
TWO

CONFIGURATION AND DATA

The following sections document configuration files and data files of some programs
that are part of the Lease software distribution.

2.1 dhcpd. conf --- DHCP server configuration

2.1.1 Description
dhcpd. conf is the configuration file for dhcpd (8), the DHCP server daemon.

dhcpd. conf is a free-form ASCII text file. It is parsed by the recursive-descent parser
built into dhcpd (8) . The file may contain extra tabs and newlines for formatting pur-
poses. Keywords in the file are case-insensitive. Comments may be placed anywhere
within the file, except within quotes. Comments begin with the # character and end at
the end of the line.

The file essentially consists of a list of statements. Statements fall into two broad cate-
gories: parameters and declarations.

Parameter statements specify how to do something (e.g., how long a lease to of-
fer), whether to do something (e.g., should dhcpd(8) provide addresses to un-
known clients), or what parameters to provide to the client (e.g., use the gateway
220.177.244.7).

Declarations are used to describe the topology of the network, to describe clients on
the network, to provide addresses that can be assigned to clients, or to apply a group
of parameters to a group of declarations. In any group of parameters and declara-
tions, all parameters must be specified before any declarations which depend on those
parameters may be specified.

Declarations about network topology include the shared-network and the subnet dec-
larations. If clients on a subnet are to be assigned addresses dynamically, a range
declaration must appear within the subnet declaration. For clients with statically as-
signed addresses, or for installations where only known clients will be served, each
such client must have a host declaration. If parameters are to be applied to a group of
declarations which are not related strictly on a per-subnet basis, the group declaration
can be used.

For every subnet which will be served, and for every subnet to which the DHCP server
is connected, there must be one subnet declaration, which tells dhcpd how to recog-

41

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

nize that an address is on that subnet. A subnet declaration is required for each subnet
even if no addresses will be dynamically allocated on that subnet.

Some installations have physical networks on which more than one IP subnet operates.
For example, if there is a site-wide requirement that 8-bit subnet masks be used, but
a department with a single physical ethernet network expands to the point where it
has more than 254 nodes, it may be necessary to run two 8-bit subnets on the same
ethernet until such time as a new physical network can be added. In this case, the
subnet declarations for these two networks must be enclosed in a shared-network
declaration.

Note

Even when the shared-network declaration is absent, an empty one is created by
the server to contain the subnet (and any scoped parameters included in the sub-
net). For practical purposes, this means that "stateless" DHCP clients, which are
not tied to addresses (and therefore subnets) will receive the same configuration as
stateful ones.

Some sites may have departments which have clients on more than one subnet, but it
may be desirable to offer those clients a uniform set of parameters which are different
than what would be offered to clients from other departments on the same subnet. For
clients which will be declared explicitly with host declarations, these declarations can
be enclosed in a group declaration along with the parameters which are common to
that department. For clients whose addresses will be dynamically assigned, class dec-
larations and conditional declarations may be used to group parameter assignments
based on information the client sends.

When a client is to be booted, its boot parameters are determined by consulting that
client's host declaration (if any), and then consulting any class declarations matching
the client, followed by the pool, subnet, and shared-network declarations for the IP
address assigned to the client. Each of these declarations itself appears within a lexical
scope, and all declarations at less specific lexical scopes are also consulted for client
option declarations. Scopes are never considered twice, and if parameters are declared
in more than one scope, the parameter declared in the most specific scope is the one
that is used.

When dhcpd (8) tries to find a host declaration for a client, it first looks for a host
declaration which has a fixed-address declaration that lists an IP address that is valid
for the subnet or shared network on which the client is booting. If it doesn't find any
such entry, it tries to find an entry which has no fixed-address declaration.

2.1.2 Examples
A typical dhcpd. conf file may look like this:

global parameters...
option domain-name "example.org";
(continues on next page)

42 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

option domain-name-servers nsl.example.org, ns2.example.org;

subnet 204.254.239.0 netmask 255.255.255.224 {
subnet-specific parameters...
option routers 204.254.239.1;
range 204.254.239.10 204.254.239.30;

subnet 204.254.239.32 netmask 255.255.255.224 {
subnet-specific parameters...
option routers 204.254.239.33;
range 204.254.239.42 204.254.239.62;

subnet 204.254.239.64 netmask 255.255.255.224 {
subnet-specific parameters...
option routers 204.254.239.65;
range 204.254.239.74 204.254.239.94;

group

group-specific parameters...
host v0O.test.example.org {

host-specific parameters...
}
host vl.test.example.org {

host-specific parameters...
}
host v2.test.example.org {

host-specific parameters...

Notice that at the beginning of the example, there's a place for global parameters.
These might be things like the organization's DNS domain name, the addresses of the
DNS nameservers (if they are common to the entire organization), and so on.

As seen in the global parameters in the example above, host addresses in parame-
ters can be specified using their DNS domain names rather than their numeric IP ad-
dresses. If a given hostname resolves to more than one IP address (for example, if that
host has two ethernet interfaces), then where possible, both addresses are supplied to
the client.

Each subnet declaration may have subnet-specific parameters. The most obvious rea-
son for having subnet-specific parameters, such as in the example above, is that each
subnet out of necessity has its own router specified using the router option.

As seen in the host-specific parameters in the example above, the address is specified

2.1. dhcpd.conf --- DHCP server configuration 43

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

numerically. This is not required --- if there is a different domain name for each inter-
face on the router, it's perfectly legitimate to use the domain name for that interface
instead of the IP address. However, in many cases there may be only one domain
name for all of a router's IP addresses, and it would not be appropriate to use that
name here.

There is also a group statement in the example above, which provides common pa-
rameters for a set of three hosts --- v0, v1, and v2. These hosts are all in the test.
example.org domain, so it might make sense for a group-specific parameter to over-
ride the domain name supplied to these hosts:

option domain-name "test.example.org";

Also, given the domain they're in, these are probably test machines. If we wanted to
test the DHCP leasing mechanism, we might set the lease timeout somewhat shorter
than the default:

max—lease—-time 120;
default-lease—-time 120;

You may have noticed that while some parameters start with the option keyword,
some do not. Parameters starting with the option keyword correspond to actual
DHCP options, while parameters that do not start with the option keyword either
control the behavior of the DHCP server (e.g., how long a lease dhcpd (8) will give
out), or specify client parameters that are not optional in the DHCP protocol (for ex-
ample, server-name and filename).

In the first example above, each host had host-specific parameters. These could in-
clude the hostname option, the name of a file to upload (the filename parameter) and
the address of the server from which to upload the file (the next-server parameter). In
general, any parameter can appear anywhere that parameters are allowed, and will be
applied according to the scope in which the parameter appears.

Imagine that you have a site with a lot of NCD X-Terminals. These terminals come in
a variety of models, and you want to specify the boot files for each model. One way to
do this would be to have host declarations for each server and group them by model:

group {
filename "Xncdl9r";
next-server ncd-booter;

host ncdl { hardware ethernet 0:c0:c3:49:2b:57; }
host ncd4 { hardware ethernet 0:c0:c3:80:fc:32; }
host ncd8 { hardware ethernet 0:c0:c3:22:46:81; }

group {
filename "Xncdl9c";
next—-server ncd-booter;
(continues on next page)

44 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

host ncd2 { hardware ethernet 0:c0:c3:88:2d:81; }
host ncd3 { hardware ethernet 0:c0:c3:00:14:11; }

group {
filename "XncdHMX";
next—-server ncd-booter;

host ncdl { hardware ethernet 0:c0:c3:11:90:23; }
host ncd4 { hardware ethernet :c0:¢c3:91:a7:8; }
host ncd8 { hardware ethernet 0:c0:c3:cc:a:8f; }

(@)

2.1.3 Address pools

The pool and pool6 declarations can be used to specify a pool of addresses that will be
treated differently than another pool of addresses, even on the same network segment
or subnet. For example, you may want to provide a large set of addresses that can be
assigned to DHCP clients that are registered to your DHCP server, while providing
a smaller set of addresses, possibly with short lease times, that are available for un-
known clients. If you have a firewall, you may be able to arrange for addresses from
one pool to be allowed access to the internet, while addresses in another pool are not,
thus encouraging users to register their DHCP clients. To do this, you would set up a
pair of pool declarations:

It is also possible to set up entirely different subnets for known and unknown clients
--- address pools exist at the level of shared networks, so address ranges within pool
declarations can be on different subnets.

As you can see in the preceding example, pools can have permit lists that control
which clients are allowed access to the pool and which aren't. Each entry in a pool's
permit list is introduced with the allow or deny keyword. If a pool has a permit list,
then only those clients that match specific entries on the permit list will be eligible to
be assigned addresses from the pool. If a pool has a deny list, then only those clients
that do not match any entries on the deny list will be eligible. If both permit and deny
lists exist for a pool, then only clients that match the permit list and do not match the
deny list will be allowed access.

The pool6 declaration is similar to the pool declaration. Currently it is only allowed
within a subnet6 declaration, and may not be included directly in a shared network
declaration. In addition to the range6 statement it allows the prefix6 statement to
be included. You may include range6 statements for both NA and TA and prefix6
statements in a single pool6 statement.

2.1. dhcpd.conf --- DHCP server configuration 45

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.1.4 Dynamic address allocation

Address allocation is actually only done when a client is in the INIT state and has
sent a DHCPDISCOVER message. If the client thinks it has a valid lease and sends
a DHCPREQUEST to initiate or renew that lease, the server has only three choices ---
it can ignore the DHCPREQUEST, send a DHCPNAK to tell the client it should stop
using the address, or send a DHCPACK, telling the client to go ahead and use the
address for a while.

If the server finds the address the client is requesting, and that address is available to
the client, the server will send a DHCPACK. If the address is no longer available, or
the client isn't permitted to have it, the server will send a DHCPNAK. If the server
knows nothing about the address, it will remain silent, unless the address is incorrect
for the network segment to which the client has been attached and the server is au-
thoritative for that network segment, in which case the server will send a DHCPNAK
even though it doesn't know about the address.

There may be a host declaration matching the client's identification. If that host decla-
ration contains a fixed-address declaration that lists an IP address that is valid for the
network segment to which the client is connected, the DHCP server will never do dy-
namic address allocation. In this case, the client is required to take the address specified
in the host declaration. If the client sends a DHCPREQUEST for some other address,
the server will respond with a DHCPNAK.

When the DHCP server allocates a new address for a client (remember, this only hap-
pens if the client has sent a DHCPDISCOVER), it first looks to see if the client already
has a valid lease on an IP address, or if there is an old IP address the client had before
that hasn't yet been reassigned. In that case, the server will take that address and check
it to see if the client is still permitted to use it. If the client is no longer permitted to
use it, the lease is freed if the server thought it was still in use --- the fact that the client
has sent a DHCPDISCOVER proves to the server that the client is no longer using the
lease.

If no existing lease is found, or if the client is forbidden to receive the existing lease,
then the server will look in the list of address pools for the network segment to which
the client is attached for a lease that is not in use and that the client is permitted to
have. It looks through each pool declaration in sequence (all range declarations that
appear outside of pool declarations are grouped into a single pool with no permit
list). If the permit list for the pool allows the client to be allocated an address from that
pool, the pool is examined to see if there is an address available. If so, then the client
is tentatively assigned that address. Otherwise, the next pool is tested. If no addresses
are found that can be assigned to the client, no response is sent to the client.

If an address is found that the client is permitted to have, and that has never been
assigned to any client before, the address is immediately allocated to the client. If
the address is available for allocation but has been previously assigned to a different
client, the server will keep looking in hopes of finding an address that has never before
been assigned to a client.

The DHCP server generates the list of available IP addresses from a hash table. This
means that the addresses are not sorted in any particular order, and so it is not possible

46 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

to predict the order in which the DHCP server will allocate IP addresses.

2.1.5 IP address conflict prevention

The DHCP server checks IP addresses to see if they are in use before allocating them to
clients. It does this by sending an ICMP Echo request message to the IP address being
allocated. If no ICMP Echo reply is received within a second, the address is assumed to
be free. This is only done for leases that have been specified in range statements, and
only when the lease is thought by the DHCP server to be free, i.e., the DHCP server or
its failover peer has not listed the lease as in use.

If a response is received to an ICMP Echo request, the DHCP server assumes that there
is a configuration error --- the IP address is in use by some host on the network that is
not a DHCP client. It marks the address as abandoned, and will not assign it to clients.
The lease will remain abandoned for a minimum of abandon-lease-time seconds.

If a DHCP client tries to get an IP address, but none are available, but there are aban-
doned IP addresses, then the DHCP server will attempt to reclaim an abandoned IP
address. It marks one IP address as free, and then does the same ICMP Echo request
check described previously. If there is no answer to the ICMP Echo request, the ad-
dress is assigned to the client.

The DHCP server does not cycle through abandoned IP addresses if the first IP address
it tries to reclaim is free. Rather, when the next DHCPDISCOVER comes in from the
client, it will attempt a new allocation using the same method described here, and will
typically try a new IP address.

2.1.6 DHCP failover

dhcpd (8) supports the DHCP failover protocol as documented in draft-ietf-dhc-
tailover-12. This is not not a final protocol document, and we have not done inter-
operability testing with other vendors' implementations of this protocol, so you must
not assume that this implementation conforms to the standard. If you wish to use the
DHCP failover feature, ensure that both failover peers are running the same version
of dhcpd (8).

The failover protocol allows two DHCP servers (and no more than two) to share a
common address pool. Each server will have about half of the available IP addresses
in the pool at any given time for allocation. If one server fails, the other server will
continue to renew leases out of the pool, and will allocate new addresses out of the
roughly half of available addresses that it had when communications with the other
server were lost.

It is possible during a prolonged failure, to tell the remaining server that the other
server is down, in which case the remaining server will (over time) reclaim all the
addresses the other server had available for allocation, and begin to reuse them. This
is called putting the server into the PARTNER-DOWN state.

You can put the server into the PARTNER-DOWN state either by using the
omshell (1) command or by stopping the server, editing the last failover state dec-
laration in the lease file, and restarting the server. If you use this last method, change

2.1. dhcpd.conf --- DHCP server configuration 47

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-12
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-12

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

the my state statement's state to partner—down:

failover peer x<name>x state {
my state partner—-down;
peer state x<state>x at x<date>x;

It is only required to change the my state statement as shown above.

When the other server comes back online, it should automatically detect that it had
been offline, and request a complete update from the server that was running in the
PARTNER-DOWN state, and then both servers will resume processing together.

Warning

It is possible to get into a dangerous situation: if you put one server into the
PARTNER-DOWN state, and then that server goes down, and the other server
comes back up, the other server will not know that the first server was in the
PARTNER-DOWN state, and may issue addresses previously issued by the other
server to different clients, resulting in IP address conflicts. Before putting a server
into PARTNER-DOWN state, therefore, ensure that the other server will not restart
automatically.

The failover protocol defines a primary server role and a secondary server role. There
are some differences in how primaries and secondaries act, but most of the differences
simply have to do with providing a way for each peer to behave in the opposite way
from the other. So one server must be configured as primary, and the other must be
configured as secondary, and it doesn't matter too much which one is which.

2.1.6.1 Failover startup

When a server starts that has not previously communicated with its failover peer, it
must establish communications with its failover peer and synchronize with it before it
can serve clients. This can happen either because you have just configured your DHCP
servers to perform failover for the first time, or because one of your failover servers
has failed catastrophically and lost its database.

The initial recovery process is designed to ensure that when one failover peer loses its
database and then resynchronizes, any leases that the failed server gave out before it
failed will be honored. When the failed server starts up, it notices that it has no saved
failover state, and attempts to contact its peer.

When it has established contact, it asks the peer for a complete copy of its peer's lease
database. The peer then sends its complete database, and sends a message indicating
that it is done. The failed server then waits until MCLT (the Maximum Client Lead
Time) has passed, and once MCLT has passed both servers make the transition back
into normal operation. This waiting period ensures that any leases the failed server
may have given out while out of contact with its partner will have expired.

While the failed server is recovering, its partner remains in the PARTNER-DOWN

48 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

state, which means that it is serving all clients. The failed server provides no service
at all to DHCP clients until it has made the transition into normal operation.

In the case where both servers detect that they have never before communicated with
their partner, they both come up in this recovery state and follow the procedure we
have just described. In this case, no service will be provided to DHCP clients until
MCLT has expired.

2.1.6.2 Configuring failover

In order to configure failover, you need to write a peer declaration that configures
the failover protocol, and you need to write peer references in each pool declaration
for which you want to do failover. You do not have to do failover for all pools on a
given network segment. You must not tell one server it's doing failover on a particular
address pool and tell the other it is not. You must not have any common address pools
on which you are not doing failover. A pool declaration that utilizes failover would
look like this:

pool {
failover peer "foo";
pool specific parameters

)i

The server currently does very little sanity checking, so if you configure it wrongly,
it will just fail in odd ways. It is recommended therefore that you either configure
failover or don't configure failover, but don't configure any mixed pools. Also, use the
same master configuration file for both servers, and have a separate file that contains
the peer declaration and includes the master file. This will help avoid configuration
mismatches. As the implementation evolves, this may become less of a problem. A
basic sample dhcpd. conf file for a primary server might look like this:

failover peer "foo" {
primary;
address a.rc.example.com;
port 519;
peer address b.rc.example.com;
peer port 520;
max—-response—delay 60;
max-unacked-updates 10;
mclt 3600;
split 128;
load balance max seconds 3;

include "/etc/dhcpd.master";

The statements in the peer declaration are as follows:

primary | secondary;

2.1. dhcpd.conf --- DHCP server configuration 49

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This statement determines whether the server is primary or secondary, as
described earlier in the section titled DHCP failover.

address <address>;

The address statement declares the IP address or DNS name on which the
server should listen for connections from its failover peer, and also the
value to use for the DHCP Failover Protocol server identifier. Because this
value is used as an identifier, it may not be omitted.

peer address <address>;

The peer address statement declares the IP address or DNS name to which
the server should connect to reach its failover peer for failover messages.

port <port-number>;

The port statement declares the TCP port on which the server should listen
for connections from its failover peer. This statement may be, in which case
the IANA assigned port number 647 will be used by default.

peer port <port-number>;

The peer port statement declares the TCP port to which the server should
connect to reach its failover peer for failover messages. This statement may
be omitted, in which case the IANA assigned port number 647 will be used
by default.

max-response-delay <seconds>;

The max-response-delay statement tells the DHCP server how many sec-
onds may pass without receiving a message from its failover peer before it
assumes that connection has failed. This number should be small enough
that a transient network failure that breaks the connection will not result in
the servers being out of communication for a long time, but large enough
that the server isn't constantly making and breaking connections. This pa-
rameter must be specified.

max-unacked-updates <count>;

The max-unacked-updates statement tells the remote DHCP server how
many BNDUPD messages it can send before it receives a BNDACK from
the local system. We don't have enough operational experience to say what
a good value for this is, but 10 seems to work. This parameter must be
specified.

mclt <seconds>;

The mclt statement defines the Maximum Client Lead Time. It must be
specified on the primary, and may not be specified on the secondary. This
is the length of time for which a lease may be renewed by either failover
peer without contacting the other. The longer you set this, the longer it
will take for the running server to recover IP addresses after moving into
PARTNER-DOWN state. The shorter you set it, the more load your servers
will experience when they are not communicating. A value of something

50 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

like 3600 is probably reasonable, but again bear in mind that we have no
real operational experience with this.

split <bits>;

The split statement specifies the split between the primary and secondary
for the purposes of load balancing. Whenever a client makes a DHCP re-
quest, the DHCP server runs a hash on the client identification, resulting in
value from 0 to 255. This is used as an index into a 256-bit field. If the bit at
that index is set, the primary is responsible. If the bit at that index is not set,
the secondary is responsible. The split value determines how many of the
leading bits are set to one. So, in practice, higher split values will cause the
primary to serve more clients than the secondary. Lower split values will
cause the secondary to serve more clients than the primary. Legal values
are between 0 and 256 inclusive, of which the most reasonable is 128. Note
that a value of 0 makes the secondary responsible for all clients and a value
of 256 makes the primary responsible for all clients.

Note

You must only have one of the split or hba statement defined, never
both. For most cases, the fine-grained control that hba offers isn't neces-
sary, and split should be used.

hba <colon-separated-hex-list>;

The hba statement specifies the split between the primary and secondary as
a bitmap rather than a cutoff, which theoretically allows for finer-grained
control. In practice, there is probably no need for such fine-grained control.

An example hba statement follows:

hba ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:£f:££:££:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00;

The above is equivalent to a split 128; statement, and is identical. The
following two examples are also equivalent to a split of 128, but are not
identical:

hba aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:
da:dada:adad.adad:da:ad.da:adad:aa.:aa:.ad:aa.aa:.aa:aa:.aay

hba 55:55:55:55:55:55:55:55:55:55:55:55:55:55:55:55:
55:55:55:55:55:55:55:55:55:55:55:55:55:55:55:55;

They are equivalent, because half the bits are set to 0, half are set to 1 (0Oxa
and 0x5 are 1010 and 0101 in binary respectively) and consequently this
would roughly divide the clients equally between the servers. They are not
identical, because the actual peers this would load balance to each server
are different for each example.

2.1. dhcpd.conf --- DHCP server configuration 51

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note

You must only have one of the split or hba statement defined, never
both. For most cases, the fine-grained control that hba offers isn't neces-
sary, and split should be used.

load balance max seconds <seconds>;

This statement allows you to configure a cutoff after which load balanc-
ing is disabled. The cutoff is based on the number of seconds since the
client sent its first DHCPDISCOVER or DHCPREQUEST message, and
only works with clients that correctly implement the secs field --- fortu-
nately most clients do. We recommend setting this to something like 3 or 5.
The effect of this is that if one of the failover peers gets into a state where
it is responding to failover messages but not responding to some client re-
quests, the other failover peer will take over its client load automatically as
the clients retry.

auto-partner-down <seconds>;

This statement instructs the server to initiate a timed delay upon enter-
ing the communications-interrupted state (any situation of being out-of-
contact with the remote failover peer). At the conclusion of the timer,
the server will automatically enter the PARTNER-DOWN state. This per-
mits the server to allocate leases from the partner's free lease pool after an
STOS+MCLT timer expires, which can be dangerous if the partner is in fact
operating at the time (the two servers will give conflicting bindings).

Warning

Think very carefully before enabling this feature. The PARTNER-
DOWN and communications-interrupted states are intentionally segre-
gated because there do exist situations where a failover server can fail to
communicate with its peer, but still has the ability to receive and reply to
requests from DHCP clients. In general, this feature should only be used
in those deployments where the failover servers are directly connected
to one another, such as by a dedicated hardwired link ("a heartbeat ca-
ble").

A <seconds> value of 0 disables the auto-partner-down feature (which is
also the default), and any positive value indicates the time in seconds to
wait before automatically entering the PARTNER-DOWN state.

max-lease-misbalance <percentage>;
max-lease-ownership <percentage>;

52 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

min-balance <seconds>;
max-balance <seconds>;

These are failover pool balance related statements.

dhcpd (8) evaluates pool balance on a schedule, rather than on demand as
leases are allocated. The on-demand approach proved to be slightly klunky
when pool misbalance reached total saturation --- when any server ran out
of leases to assign, it also lost its ability to notice it had run dry.

In order to understand pool balance, some elements of its operation first
need to be defined. First, there are free and backup leases. Both of these are
referred to as free state leases. free and backup are the free states for the purpose
of this document. The difference is that only the primary may allocate from
free leases unless under special circumstances, and only the secondary may
allocate backup leases.

When pool balance is performed, the only plausible expectation is to pro-
vide a 50/50 split of the free state leases between the two servers. This
is because no one can predict which server will fail, regardless of the rel-
ative load placed upon the two servers, so giving each server the leases
gives both servers the same amount of failure endurance. Therefore, there
is no way to configure any different behaviour, outside of some very small
windows we will describe shortly.

The first thing calculated on any pool balance run is a value referred to as
Its (Leases To Send). For the primary, this is the difference in the count of
free and backup leases, divided by 2. For the secondary; it is the difference
in the count of backup and free leases, divided by 2. The resulting value
is signed: if it is positive, the local server is to hand out leases to retain a
50/50 balance. If it is negative, the remote server would need to send leases
to balance the pool. Once the Its value reaches zero, the pool is perfectly
balanced (give or take one lease in the case of an odd number of total free
state leases).

The current approach is still something of a hybrid of the old approach,
marked by the presence of the max-lease-misbalance statement. This pa-
rameter configures what used to be a 10% fixed value in previous versions:
if Its is less than: (free + backup * max-lease-misbalance) percent, then
the server will skip balancing a given pool --- it won't bother moving any
leases, even if some leases should be moved. The meaning of this value is
also somewhat overloaded, in that it also governs the estimation of when
to attempt to balance the pool --- which may then also be skipped over.
The oldest leases in the free and backup states are examined. The time they
have resided in their respective queues is used as an estimate to indicate
how much time it is probable that it would take before the leases at the top
of the list would be consumed, and thus how long it would take to use all
leases in that state. This percentage is directly multiplied by this time, and
fit into the schedule if it falls within the min-balance and max-balance con-
tfigured values. The scheduled pool check time is only moved in a down-

2.1. dhcpd.conf --- DHCP server configuration 53

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

wards direction, it is never increased. Lastly, if the Ifs is more than double
this number in the negative direction, the local server will panic and trans-
mit a failover protocol POOLREQ message, in the hopes that the remote
system will be woken up into action.

Once the Its value exceeds the max-lease-misbalance percentage of total
free state leases as described above, leases are moved to the remote server.
This is done in two passes.

In the first pass, only leases whose most recent bound client would have
been served by the remote server --- according to the Load Balance (see the
split and hba configuration statements) --- are given away to the peer. This
tirst pass will happily continue to give away leases, decrementing the Its
value by one for each, until the Ifs value has reached the negative of the
total number of leases multiplied by the max-lease-ownership percentage.
So it is through this value that you can permit a small misbalance of the
lease pools - for the purpose of giving the peer more than a 50/50 share of
leases in the hopes that their clients might some day return and be allocated
by the peer (operating normally). This process is referred to as MAC Ad-
dress Affinity, but this is somewhat misnamed: it applies equally to DHCP
Client Identifier options. Note also that affinity is applied to leases when
they enter the free state from the expired or released states. In this case also,
leases will not be moved from free to backup if the secondary already has
more its share.

The second pass is only entered into if the first pass fails to reduce the Its
underneath the total number of free state leases multiplied by max-lease-
ownership percentage. In this pass, the oldest leases are given over to the
peer without second thought about the Load Balance Algorithm, and this
continues until the Its falls under this value. In this way, the local server
will also happily keep a small percentage of leases that would normally
load balance to itself.

So, the max-lease-misbalance value acts as a behavioural gate. Smaller
values will cause more leases to transition states to balance the pools over
time, higher values will decrease the amount of change, but may lead to
pool starvation if there's a run on leases.

The max-lease-ownership value permits a small (percentage) skew in the
lease balance of a percentage of the total number of free state leases.

Finally, the min-balance and max-balance statements make certain that a
scheduled rebalance event happens within a reasonable timeframe, for ex-
ample, not to be thrown off by a 7-year old free lease.

Plausible values for the percentages lie between 0 and 100 (inclusive), but
values over 50 are indistinguishable from one another --- once Its exceeds
50% of the free state leases, one server must therefore have 100% of the
leases in its respective free state. It is recommended to select a max-lease-
ownership value that is lower than the value selected for the max-lease-
misbalance value. max-lease-ownership defaults to 10, and max-lease-

54

Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

misbalance defaults to 15.

Plausible values for the min-balance and max-balance times also range
from 0 to (2/32)-1 (or the limit of your local t ime_t value), but default to
values 60 and 3600 respectively (to place balance events between 1 minute
and 1 hour).

2.1.7 Client classing

Clients can be separated into classes, and treated differently depending on what class
they are in. This separation can be done either with a conditional statement, or with
a match statement within the class declaration. It is possible to specify a limit on the
total number of clients within a particular class or subclass that may hold leases at one
time, and it is possible to specify automatic subclassing based on the contents of the
client packet.

Note

Classing support for DHCPV6 clients follows the same rules as for DHCPv4 except
that support for billing classes has not been added yet.

To add clients to classes based on conditional evaluation, you can specify a match
expression in the class statement:

class "ras-clients" {

match if substring (option dhcp-client-identifier, 1, 3) =
~"RAS";
}

Note that whether you use matching expressions or add statements or both to classify
clients, you must always write a class declaration for any class that you use. If there
will be no match statement and no in-scope statements for a class, the declaration
should be an empty one:

class "ras—-clients" {

}

2.1.7.1 Subclasses

In addition to classes, it is possible to declare subclasses. A subclass is a class with the
same name as a regular class, but with a specific submatch expression which is hashed
for quick matching. This is essentially a speed hack --- the main difference between
tive classes with match expressions and one class with five subclasses is that it will be
quicker to find the subclasses. Subclasses work as follows:

class "allocation—-class—-1" {
match pick-first-value (option dhcp-client-identifier,
—~hardware) ;
(continues on next page)

2.1. dhcpd.conf --- DHCP server configuration 55

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

class "allocation—-class—-2" {
match pick-first-value (option dhcp-client-identifier,
—hardware) ;

}

:8:0:2b:4c:39:ad;
:8:0:2b:a9%:cc:e3;
:0:0:cd4:aa:29:44;

subclass "allocation—-class—-1"
subclass "allocation—-class—-2"
subclass "allocation—-class—1"

o e

subnet 10.0.0.0 netmask 255.255.255.0 {

pool {
allow members of "allocation-class—-1";
range 10.0.0.11 10.0.0.50;

}

pool {
allow members of "allocation-class—2";
range 10.0.0.51 10.0.0.100;

The data following the class name in the subclass declaration is a constant value for
use in matching the match expression for the class. When class matching is done, the
server will evaluate the match expression and then lookup the result in the hash table.
If it finds a match, the client is considered a member of both the class and the subclass.

Subclasses can be declared with or without scope. In the above example, the sole
purpose of the subclass is to allow some clients access to one address pool, while other
clients are given access to the other pool, so these subclasses are declared without
scopes. If part of the purpose of the subclass were to define different parameter values
for some clients, you might want to declare some subclasses with scopes.

In the above example, if you had a single client that needed some configuration pa-
rameters, while most didn't, you might write the following subclass declaration for
that client:

subclass "allocation-class-2" 1:08:00:2b:al:11:31 {
option root-path "storageO:/var/diskless/linux";
filename "/tftpboot/linux.diskless";

In this example, we've used subclassing as a way to control address allocation on a
per-client basis. However, it's also possible to use subclassing in ways that are not
specific to clients --- for example, to use the value of the vendor-class-identifier op-
tion to determine what values to send in the vendor-encapsulated-options option.
An example of this is shown in the section on vendor encapsulated options in the
dhcp-options (5) manual page.

56 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.1.7.2 Per-class limits on dynamic address allocation

You may specify a limit to the number of clients in a class that can be assigned leases.
The effect of this will be to make it difficult for a new client in a class to get an address.
Once a class with such a limit has reached its limit, the only way a new client in that
class can get a lease is for an existing client to relinquish its lease, either by letting it
expire, or by sending a DHCPRELEASE packet. Classes with lease limits are specified
as follows:

class "limited-1" {
lease limit 4;

}

This will produce a class in which a maximum of 4 members may hold a lease at one
time.

2.1.7.3 Spawning classes

It is possible to declare a spawning class. A spawning class is a class that automati-
cally produces subclasses based on what the client sends. The reason that spawning
classes were created was to make it possible to create lease-limited classes on the fly.
The envisioned application is a cable-modem environment where the ISP wishes to
provide clients at a particular site with more than one IP address, but does not wish to
provide such clients with their own subnet, nor give them an unlimited number of IP
addresses from the network segment to which they are connected.

Many cable modem head-end systems can be configured to add a Relay Agent In-
formation option to DHCP packets when relaying them to the DHCP server. These
systems typically add a circuit ID or remote ID option that uniquely identifies the cus-
tomer site. To take advantage of this, you can write a class declaration as follows:

class "customer" {
spawn with option agent.circuit-id;
lease limit 4;

}

Now whenever a request comes in from a customer site, the circuit ID option will be
checked against the class's hash table. If a subclass is found that matches the circuit
ID, the client will be classified in that subclass and treated accordingly. If no subclass
is found matching the circuit ID, a new one will be created and logged in the dhcpd.
leases (5) file, and the client will be classified in this new class. Once the client has
been classified, it will be treated according to the rules of the class, including, in this
case, being subject to the per-site limit of four leases.

The use of the subclass spawning mechanism is not restricted to relay agent options
--- this particular example is given only because it is a fairly straightforward one.

2.1. dhcpd.conf --- DHCP server configuration 57

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.1.7.4 Combining match, match if, and spawn with

In some cases, it may be useful to use one expression to assign a client to a particular
class, and a second expression to put it into a subclass of that class. This can be done
by combining the match if and spawn with statements, or the match if and match
statements. For example:

class "jr-cable-modems" {
match if option dhcp-vendor-identifier = "jrcm";
spawn with option agent.circuit-id;
lease limit 4;

}

class "dv-dsl-modems" {
match if option dhcp-vendor-identifier = "dvdsl";
spawn with option agent.circuit-id;
lease limit 16;

}

This allows you to have two classes that both have the same spawn with expression
without getting the clients in the two classes confused with each other.

2.1.8 Dynamic DNS updates

dhcpd (8) has the ability to perform dynamic DNS updates (RFC 2136). Within the
configuration files, you can define how you want the DNS to be updated. These up-
dates are RFC 2136 compliant so any DNS server supporting it should be able to accept
updates from the DHCP server.

There are two DNS schemes implemented. The interim option is based on draft
revisions of the DDNS documents while the standard option is based on the RFCs
for DHCP-DNS interaction and DHCIDs. The DHCP server may be configured to use
one of the methods, or not to do DNS updates.

New installations should use the standard option. Older installations may want
to continue using the interim option for backwards compatibility with the DNS
database until the database can be updated. This can be done with the ddns-update-
style configuration parameter.

2.1.9 The DNS UPDATE scheme

The interimand standard DNS update schemes operate mostly according to spec-
ification from the IETE. The interim version was based on the drafts in progress at
the time while the st andard is based on the completed RFCs. The standard RFCs are:

e RFC 4701 (updated by RFC 5494)
* RFC 4702
 RFC 4703

And the corresponding drafts were:

58 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc2136.html
https://datatracker.ietf.org/doc/html/rfc2136.html
https://datatracker.ietf.org/doc/html/rfc4701.html
https://datatracker.ietf.org/doc/html/rfc5494.html
https://datatracker.ietf.org/doc/html/rfc4702.html
https://datatracker.ietf.org/doc/html/rfc4703.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

e draft-ietf-dnsext-dhcid-rr
¢ draft-ietf-dhc-fqdn-option
e draft-ietf-dhc-ddns-resolution

The basic framework for the two schemes is similar with the main material difference
being that a DHCID RR is used in the standard version while the interim versions uses
a TXT RR. The format of the TXT record bears a resemblance to the DHCID RR but it
is not equivalent (MD5 vs. SHA-256, field length differences, etc.).

In these two schemes, the DHCP server does not necessarily always update both the A
and the PTR records. The FQDN option includes a flag which, when sent by the client,
indicates that the client wishes to update its own A record. In that case, the server can
be configured either to honor the client s intentions or ignore them. This is done with
the statements:

** allow client-updates; or ** ignore client-updates;
By default, DNS UPDATEs by clients are allowed.

If the server is configured to allow client updates, then if the client sends a fully-
qualified domain name in the FQDN option, the server will use that name the client
sent in the FQDN option to update the PTR record. For example, let us say that the
client is a visitor from the radish.org domain, whose hostname is jschmoe. The
server is for the example.org domain. The DHCP client indicates in the FQDN op-
tion that its FQDN is jschmoe.radish.org.. It also indicates that it wants to up-
date its own A record. The DHCP server therefore does not attempt to set up an A
record for the client, but does set up a PTR record for the IP address that it assigns the
client, with its RDATA pointing to jschmoe . radish.org. Once the DHCP client has
an IP address, it can update its own A record, assuming that the radish.org DNS
server will allow it to do so.

If the server is configured not to allow client updates, or if the client doesn't want to
do its own update, the server will simply choose a name for the client. By default, the
server will choose from the following three values:

¢ fqdn option (if present)
¢ hostname option (if present)
¢ Configured hostname option (if defined)

If these defaults for choosing the hostname are not appropriate, you can write your
own statement to set the ddns-hostname variable as you wish. If none of the above
are found, the server will use the host declaration name (if one exists) and use-host-
decl-names is true.

It will use its own domain name for the client. It will then update both A and PTR
records, using the name that it chose for the client. If the client sends a fully-qualified
domain name in the FQDN option, the server uses only the leftmost part of the domain
name --- in the example above, jschmoe instead of jschmoe.radish.org..

Further, if the ignore client-updates; directive is used, then the server will in addi-
tion send a response in the DHCP packet, using the FQDN option, that implies to the

2.1. dhcpd.conf --- DHCP server configuration 59

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

client that it should perform its own updates if it chooses to do so. With deny client-
updates;, a response is sent which indicates the client may not perform updates.

Both the standard and interim options also include a method to allow more than
one DHCP server to update the DNS without accidentally deleting A records that
shouldn't be deleted, or failing to add A records that should be added. For the
standard option the method works as follows:

When the DHCP server issues a client a new lease, it creates a text string that is a
SHA-256 hash over the DHCP client's identification (see RFC 4701 and RFC 4702 for
details). The update attempts to add an A record with the name the server chose and a
DHCID record containing the hashed identifier string (hashid). If this update succeeds,
the server is done.

If the update fails because the A record already exists, then the DHCP server attempts
to add the A record with the prerequisite that there must be a DHCID record with the
same name as the new A record, and that DHCID record's contents must be equal to
hashid. If this update succeeds, then the client has its A record and PTR record. If it
fails, then the name the client has been assigned (or requested) is in use, and can't be
used by the client. At this point the DHCP server gives up trying to do a DNS update
for the client until the client chooses a new name.

The server also does not update very aggressively. Because each DNS update involves
a round trip to the DNS server, there is a cost associated with doing DNS update
transactions even if they do not actually modify the DNS database. So the DHCP
server tracks whether or not it has updated the record in the past (this information is
stored on the lease) and does not attempt to update records that it thinks it has already
updated.

This can lead to cases where the DHCP server adds a record, and then the record is
deleted through some other mechanism, but the server never again updates the DNS
because it thinks the data is already there. In this case the data can be removed from
the lease through operator intervention, and once this has been done, the DNS will be
updated the next time the client renews.

The interim DNS update scheme was written before the RFCs were finalized and
does not quite follow them. The RFCs call for a new DHCID RR type while the interim
DNS update scheme uses a TXT record. In addition, draft-ietf-dhc-ddns-resolution
called for the DHCP server to put a DHCID RR on the PTR record, but the interim
update method does not do this. In the final RFC this requirement was relaxed such
that a server may add a DHCID RR to the PTR record.

2.1.9.1 Dynamic DNS UPDATE security

When you set your DNS server up to allow updates from the DHCP server, you may
be exposing it to unauthorized updates. To avoid this, you should use TSIG Secret
Key Transaction Authentication for DNS (RFC 8945) --- a method of cryptographically
signing updates with HMACs using a shared secret key. As long as you protect the
secrecy of this key, your DNS updates should also be secure. Note, however, that
the DHCP protocol itself provides no security, and that clients can therefore provide
information to the DHCP server which the DHCP server will then use in its DNS

60 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc4701.html
https://datatracker.ietf.org/doc/html/rfc4702.html
https://datatracker.ietf.org/doc/html/rfc8945.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

updates, with the constraints described previously.

The DNS server must be configured to allow updates for any zone that the DHCP
server will be updating. For example, let us say that clients in the example.org
domain will be assigned addresses on the 10.10.17.0/24 subnet, and that you are us-
ing named (8) from the Loop DNS software distribution. In that case, in named.
conf (5), you will need a key declaration for the TSIG key you will be using, and
also two zone declarations --- one for the zone containing A records that will be up-
dated, and one for the zone containing PTR records:

key "DHCP_UPDATER" ({

algorithm hmac-sha256;

secret "gayUgAHVsBBHwWE/1bKRod2jGFDf9c10h8az5RYDmMFEU=";
bi

zone "example.org" {
type master;
file "example.org.db";
allow—update { key DHCP_UPDATER; 1};

15

zone "17.10.10.in-addr.arpa" {

type master;

file "10.10.17.db";

allow—update { key DHCP_UPDATER; 1};
}i

You will also have to configure your DHCP server to do updates to these zones. To do
so, you need to add something like this to your dhcpd. conf file:

key DHCP_UPDATER {

algorithm hmac-sha256;

secret "gayUgAHVsBBHwWF/1bKRod2 jGFDf9c10h8az5RYDmFEU="";
}i

zone EXAMPLE.ORG. {
primary 127.0.0.1;
key DHCP_UPDATER;

zone 17.127.10.in-addr.arpa. {
primary 127.0.0.1;
key DHCP_UPDATER;

The primary statement specifies the IP address of the DNS nameserver whose zone
information is to be updated. In addition to the primary statement, there are also
the primary6, secondary, and secondary6 statements. The primary6 statement spec-
ifies an IPv6 address for the DNS nameserver. The secondaries provide additional

2.1. dhcpd.conf --- DHCP server configuration 61

https://banu.com/loop/

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

addresses for DNS nameservers to be used if the primary does not respond. The num-
ber of DNS nameservers the DDNS code will attempt to use before giving up is limited
and is currently set to 3.

Note that the zone declarations have to correspond to authority records in your DNS
nameserver --- in the above example, there must be an SOA record for example.org.
and for 17.10.10.1in-addr.arpa.. For example, if there were a subdomain foo.
example.org with no separate SOA, you could not write a zone declaration for foo.
example.org. Also keep in mind that DNS zone names in your DHCP configuration
should end with a period (.); this is the preferred syntax. If you do not end your DNS
zone names with a period (.), the DHCP server will figure it out. Also note that in the
DHCP configuration, zone names are not surrounded by quotes, whereas there are in
the DNS configuration.

You should choose your own TSIG secret key, of course. The Loop DNS soft-
ware distribution comes with a program for generating TSIG secret keys called
ddns-confgen (1). Using it, the TSIG secret key can be created as follows:

$ ddns-confgen —-g -k DHCP_UPDATER
key "DHCP_UPDATER" {
algorithm hmac-sha256;
secret "1SBmw/sSPYiceOHcTzoJdwbtl+6d5sEO0V5kfAdgTeD6U="";

L

The key name, algorithm, and secret must match that being used by the DNS server.
The DHCP server currently supports the following TSIG algorithms:

e HMAC-MD5
HMAC-SHA1
HMAC-SHA224
HMAC-SHA256
HMAC-SHA384
e HMAC-SHA512

You may wish to enable logging of DNS updates on your DNS server. If you are
using the Loop DNS software distribution, you can add a logging statement like the
following to the named. conf (5) file:

logging {

channel update_debug {
file "/var/log/loop/update-debug.log";
severity debug 3;
print-category yes;
print-severity yes;
print-time yes;

bi

(continues on next page)

62 Chapter 2. Configuration and data

https://banu.com/loop/
https://banu.com/loop/
https://banu.com/loop/

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

channel security_info {
file "/var/log/loop/named-auth.info";
severity info;
print-category yes;
print-severity vyes;
print-time yes;

i

category update { update_debug; };
category security { security_info; };

b

You must create the /var/log/loop/named-auth.info and /var/log/loop/
update-debug. log files before running the named (8) program. For more infor-
mation, see named. conf (5).

2.1.10 Events

There are three kinds of events that can happen regarding a lease, and it is possible to
declare statements that occur when any of these events happen. These events are the
commit event when the server has made a commitment of a certain lease to a client,
the release event when the client has released the server from its commitment, and the
expiry event when the commitment expires.

To declare a set of statements to execute when an event happens, you must use the
on statement, followed by the name of the event, followed by a series of statements to
execute when the event happens, enclosed in braces.

2.1.11 Declarations
include <filename-string>;

The include statement is used to read in the specified file, and process the
contents of that file as though it were entered in the lexical place of the
include statement.

shared-network <name> { [<parameters> | [<declarations>] }

The shared-network statement is used to inform the DHCP server that
some IP subnets actually share the same physical network. Any subnets in
a shared network should be declared within a shared-network statement.
Parameters specified in the shared-network statement will be used when
booting clients on those subnets unless parameters provided at the subnet
or host level override them. If any subnet in a shared network has ad-
dresses available for dynamic allocation, those addresses are collected into
a common pool for that shared network and assigned to clients as needed.
There is no way to distinguish on which subnet of a shared network a client
should boot.

2.1. dhcpd.conf --- DHCP server configuration 63

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

<name should be the name of the shared network. This name is used when
printing debugging messages, so it should be descriptive for the shared
network. The name may have the syntax of a valid domain name (although
it will never be used as such), or it may be any arbitrary name, enclosed in
quotes.

subnet <subnet-number> netmask <netmask> { [<parameters> | [<declarations>]}

The subnet statement is used to provide dhcpd (8) with enough informa-
tion to tell whether or not an IP address is on that subnet. It may also be
used provide subnet-specific parameters and to specify which addresses
may be dynamically allocated to clients booting on that subnet. Such ad-
dresses are specified using the range declaration.

The <subnet-number> should be an IP address or domain name which re-
solves to the subnet number of the subnet being described. The <netmask>
should be an IP address or domain name which resolves to the subnet mask
of the subnet being described. The subnet number, together with the net-
mask, are sufficient to determine whether any given IP address is on the
specified subnet.

Although a netmask must be given with every subnet declaration, it is rec-
ommended that if there is any variance in subnet masks at a site, a subnet-
mask option statement be used in each subnet declaration to set the de-
sired subnet mask, since any subnet-mask option statement will override
the subnet mask declared in the subnet statement.

subnet6 <subnet6-number> { [<parameters> | [<declarations>]}

The subnet6 statement is used to provide dhcpd (8) with enough informa-
tion to tell whether or not an IPv6 address is on that subnet6. It may also
used to provide subnet-specific parameters and to specify what addresses
may be dynamically allocated to clients booting on that subnet.

The <subnet6-number> should be an IPv6 network identifier, specified as
ip6-address/bits.

range [dynamic-bootp | <low-address> [<high-address> |;

For any subnet on which addresses will be assigned dynamically, there
must be at least one range statement. The range statement provides the
lowest and highest IP addresses in a range. All IP addresses in the range
should be in the subnet in which the range statement is declared. The
dynamic-bootp flag may be specified if addresses in the specified range
may be dynamically assigned to BOOTP clients as well as DHCP clients.
When specifying a single address, high-address can be omitted.

range6 <low-address> <high-address>;
range6 <subnet6-number>;
range6 <subnet6-number> temporary;

64 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

range6 <address> temporary;

For any IPv6 subnet6 on which addresses will be assigned dynamically,
there must be at least one range6 statement. The range6 statement can ei-
ther be the lowest and highest IPv6 addresses in a range6, or use CIDR no-
tation specified as ip6-address/bits. All IP addresses in the range6 should
be in the subnet6 in which the range6 statement is declared.

The temporary flag if set makes the prefix (by default on 64 bits) avail-
able for temporary addresses (RFC 4941). A new address per prefix in the
shared network is computed at each request with an IA_TA option. Release
and Confirm ignores temporary addresses.

Any IPv6 addresses given to hosts with fixed-addressé are excluded from
the range6, as are IPv6 addresses on the server itself.

prefix6 <low-address> <high-address> / <bits>;

The prefix6 statement is the range6 equivalent for Prefix Delegation (RFC
3633). Prefixes of <bits> length are assigned between <low-address> and
<high-address>.

Any IPv6 prefixes given to static entries (hosts) with fixed-prefix6 are ex-
cluded from the prefix6.

This statement is currently global but it should have a shared-network
scope.

host <hostname> { [<parameters>]| [<declarations>] }

The host declaration provides a way for the DHCP server to identify a
DHCP or BOOTP client. This allows the server to provide configuration
information including fixed addresses or, in DHCPv®6, fixed prefixes for
specific clients.

If it is desirable to be able to boot a DHCP or BOOTP client on more than
one subnet with fixed v4 addresses, more than one address may be speci-
tied in the fixed-address declaration, or more than one host statement may
be specified matching the same client.

The fixed-address6 declaration is used for v6 addresses. At this time it only
works with a single address. For multiple addresses specify multiple host
statements.

If client-specific boot parameters must change based on the network to
which the client is attached, then multiple host declarations should be
used. The host declarations will only match a client if one of their fixed-
address statements is viable on the subnet (or shared network) where the
client is attached. Conversely, for a host declaration to match a client be-
ing allocated a dynamic address, it must not have any fixed-address state-
ments. You may therefore need a mixture of host declarations for any given
client --- some having fixed-address statements, others without.

2.1. dhcpd.conf --- DHCP server configuration 65

https://datatracker.ietf.org/doc/html/rfc4941.html
https://datatracker.ietf.org/doc/html/rfc3633.html
https://datatracker.ietf.org/doc/html/rfc3633.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

<hostname> should be a name identifying the host. If a hostname option is
not specified for the host, <hostname> is used.

host declarations are matched to actual DHCP or BOOTP clients by match-
ing the dhcp-client-identifier option specified in the host declaration to the
one supplied by the client, or, if the host declaration or the client does not
provide a dhcp-client-identifier option, by matching the hardware param-
eter in the host declaration to the network hardware address supplied by
the client. BOOTP clients do not normally provide a dhcp-client-identifier,
so the hardware address must be used for all clients that may boot using
the BOOTP protocol.

DHCPV6 servers can use the host-identifier option parameter in the host
declaration, and specify any option with a fixed value to identify hosts.

Please be aware that only the dhcp-client-identifier option and the hard-
ware address can be used to match a host declaration, or the host-identifier
option parameter for DHCPv6 servers. For example, it is not possible
to match a host declaration to a host-name option. This is because the
host-name option cannot be guaranteed to be unique to any given client,
whereas both the hardware address and dhcp-client-identifier option are
at least theoretically guaranteed to unique to a given client.

group { [<parameters>] [<declarations>] }

The group statement is used to apply one or more parameters to a group
of declarations. It can be used to group hosts, shared networks, subnets, or
even other groups.

2.1.12 Allow and deny

The allow and deny statements can be used to control the response of the DHCP server
to various sorts of requests. The allow and deny keywords actually have different
meanings depending on the context. In a pool context, these keywords can be used to
set up access control lists for address allocation pools. In other contexts, the keywords
simply control general server behavior with respect to clients based on scope. In a
non-pool context, the ignore keyword can be used in place of the deny keyword to

prevent logging of denied requests.

2.1.12.1 allow, deny, and ignore in scope

The following usages of allow and deny will work in any scope, although it is not

recommended that they be used in pool declarations.

allow unknown-clients;

deny unknown-clients;

ignore unknown-clients;

66

Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The unknown-clients flag is used to tell dhcpd (8) whether or not to dy-
namically assign addresses to unknown clients. Dynamic address assign-
ment to unknown clients is allowed by default. An unknown client is sim-
ply a client that has no host declaration.

The use of this option is now deprecated. If you are trying to restrict access
on your network to known clients, you should use deny unknown-clients;
inside of your address pool, as described in the section titled allow and deny
within pool declarations.

allow bootp;
deny bootp;
ignore bootp;

The bootp flag is used to tell dhcpd (8) whether or not to respond to
BOOTP queries. BOOTP queries are allowed by default.

allow booting;
deny booting;
ignore booting;

The booting flag is used to tell dhcpd (8) whether or not to respond to
queries from a particular client. This keyword only has meaning when it
appears in a host declaration. By default, booting is allowed, but if it is
disabled for a particular client, then that client will not be able to get an
address from the DHCP server.

allow duplicates;
deny duplicates;

host declarations can match client messages based on the DHCP Client
Identifier option or based on the client's network hardware type and MAC
address. If the MAC address is used, the host declaration will match any
client with that MAC address --- even clients with different client identi-
tiers. This doesn't normally happen, but is possible when one computer has
more than one operating system installed on it --- for example, Microsoft
Windows and NetBSD or Linux.

The duplicates flag tells the DHCP server that if a request is received from a
client that matches the MAC address of a host declaration, any other leases

2.1. dhcpd.conf --- DHCP server configuration 67

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

matching that MAC address should be discarded by the server, even if the
UID is not the same. This is a violation of the DHCP protocol, but can pre-
vent clients whose client identifiers change regularly from holding many
leases at the same time. By default, duplicates are allowed.

allow declines;
deny declines;
ignore declines;

The DHCPDECLINE message is used by DHCP clients to indicate that
the lease the server has offered is not valid. When the server receives a
DHCPDECLINE for a particular address, it normally abandons that ad-
dress, assuming that some unauthorized system is using it. Unfortunately,
a malicious or buggy client can, using DHCPDECLINE messages, com-
pletely exhaust the DHCP server's allocation pool. The server will even-
tually reclaim these leases, but not while the client is running through the
pool. This may cause serious thrashing in the DNS, and it will also cause
the DHCP server to forget old DHCP client address allocations.

The declines flag tells the DHCP server whether or not to honor DHCPDE-
CLINE messages. If it is set to deny or ignore in a particular scope, the
DHCP server will not respond to DHCPDECLINE messages.

The declines flag is only supported by DHCPv4 servers. Given the large
IPv6 address space and the internal limits imposed by the server's address
generation mechanism, we don't think it is necessary for DHCPv6 servers
at this time.

Currently, abandoned IPv6 addresses are reclaimed in one of two ways:

* Client renews a specific address: If a client using a given DUID sub-
mits a DHCP REQUEST containing the last address abandoned by that
DUID, the address will be reassigned to that client.

¢ Upon the second restart following an address abandonment: When an
address is abandoned, it is both recorded as such in the lease file and
retained as abandoned in server memory until the server is restarted.
Upon restart, the server will process the lease file and all addresses
whose last known state is abandoned will be retained as such in mem-
ory but not rewritten to the lease file. This means that a subsequent
restart of the server will not see the abandoned addresses in the lease
file, and will therefore have no record of them as abandoned in mem-
ory, and as such, the server will perceive them as free for assignment.

The total number of addresses in a pool, available for a given DUID value,
is internally limited by the server's address generation mechanism. If
through mistaken configuration, multiple clients are using the same DUID,
they will competing for the same addresses causing the server to reach this

68 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

internal limit rather quickly. The internal limit isolates this type of activity
such that the address range is not exhausted for other DUID values. The
appearance of the following error log message can be an indication of this
condition:

"Best match for DUID <XX> is an abandoned address, This may
be a result of multiple clients attempting to use this DUID"

where <XX> is an actual DUID value depicted as colon separated string of
bytes in hexadecimal values.

allow client-updates;
deny client-updates;

The client-updates flag tells the DHCP server whether or not to honor the
client's intention to do its own update of its A record. See the section titled
Dynamic DNS updates for details.

allow leasequery;
deny leasequery;

The leasequery flag tells the DHCP server whether or not to answer DHC-
PLEASEQUERY packets. The answer to a DHCPLEASEQUERY packet in-
cludes information about a specific lease, such as when it was issued and
when it will expire. By default, the server will not respond to these packets.

2.1.12.2 allow and deny within pool declarations

The uses of the allow and deny keywords shown in the previous section work pretty
much the same way whether the client is sending a DHCPDISCOVER or a DHCPRE-
QUEST message --- an address will be allocated to the client (either the old address it's
requesting, or a new address) and then that address will be tested to see if it's okay to
let the client have it. If the client requested it, and it's not okay, the server will send a
DHCPNAK message. Otherwise, the server will simply not respond to the client. If it
is okay to give the address to the client, the server will send a DHCPACK message.

The primary motivation behind pool declarations is to have address allocation pools
whose allocation policies are different. A client may be denied access to one pool, but
allowed access to another pool on the same network segment. In order for this to work,
access control has to be done during address allocation, not after address allocation is
done.

When a DHCPREQUEST message is processed, address allocation simply consists of
looking up the address the client is requesting and checking if it's still available for the
client. If it is, then the DHCP server checks both the address pool permit lists and the

2.1. dhcpd.conf --- DHCP server configuration 69

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

relevant in-scope allow and deny statements to see if it's okay to give the lease to the
client. In the case of a DHCPDISCOVER message, the allocation process is done as
described in the section titled Dynamic address allocation.

When declaring permit lists for address allocation pools, the following statements are
recognized:

allow known-clients;
deny known-clients;

If specified, this statement either allows or prevents allocation from this
pool to any client that has a host declaration (i.e., is known). A client is
known if it has a host declaration in any scope, not just the current scope.

allow unknown-clients;
deny unknown-clients;

If specified, this statement either allows or prevents allocation from this
pool to any client that has no host declaration (i.e., is not known).

allow members of <class>;
deny members of <class>;

If specified, this statement either allows or prevents allocation from this

pool to any client that is a member of the named class.

allow dynamic bootp clients;
deny dynamic bootp clients;

If specified, this statement either allows or prevents allocation from this

pool to any BOOTP client.

allow authenticated clients;
deny authenticated clients;

70 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

If specified, this statement either allows or prevents allocation from this
pool to any client that has been authenticated using the DHCP authentica-
tion protocol.

Warning

This is not yet supported.

allow unauthenticated clients;
deny unauthenticated clients;

If specified, this statement either allows or prevents allocation from this
pool to any client that has not been authenticated using the DHCP authen-
tication protocol.

Warning

This is not yet supported.

allow all clients;
deny all clients;

If specified, this statement either allows or prevents allocation from this
pool to all clients. This can be used when you want to write a pool declara-
tion for some reason, but hold it in reserve, or when you want to renumber
your network quickly, and thus want the server to force all clients that have
been allocated addresses from this pool to obtain new addresses immedi-
ately when they next renew.

allow after <time>;
deny after <time>;

If specified, this statement either allows or prevents allocation from this
pool after a given date. This can be used when you want to move clients
from one pool to another. The server adjusts the regular lease time so that
the latest expiry time is at (<time> + min-lease-time). A short min-lease-
time enforces a step change, whereas a longer min-lease-time allows for a
gradual change. <time> is either seconds since epoch, or a UTC time string

2.1. dhcpd.conf --- DHCP server configuration 71

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

e.g. 42007/08/24 09:14:32 or a string with time zone offset in seconds e.g.
42007/08/24 11:14:32 -7200.

2.1.13 Parameters
adandon-lease-time <time>;

<time> should be the maximum amount of time (in seconds) that an aban-
doned IPv4 lease remains unavailable for assignment to a client. Aban-
doned leases will only be offered to clients if there are no free leases. If not
defined, the default abandon lease time is 86400 seconds (24 hours). Note
that the abandoned lease time for a given lease is preserved across server
restarts. The parameter may only be set at the global scope and is evaluated
only once during server startup.

Values less than 60 seconds are not recommended as this is below the ping
check threshold and can cause leases, once abandoned but since returned
to the free state, to not be pinged before being offered. If the requested
time is larger than Ox7FFFFFFF - 1, or the sum of the current time plus the
abandoned time is greater than Ox7FFFFFFF, it is treated as infinite.

adaptive-lease-time-threshold <percentage>;

When the number of allocated leases within a pool rises above <percent-
age>, the DHCP server decreases the lease length for new clients within
this pool to min-lease-time seconds. Clients renewing an already valid
(long) leases get at least the remaining time from the current lease. Since
the leases expire faster, the server may either recover more quickly or avoid
pool exhaustion entirely. Once the number of allocated leases drop below
the threshold, the server reverts back to normal lease times. Valid percent-
ages are between 1 and 99.

always-broadcast <flag>;

The DHCP and BOOTP protocols both require DHCP and BOOTP clients
to set the broadcast bit in the flags field of the BOOTP message header. Un-
fortunately, some DHCP and BOOTP clients do not do this, and therefore
may not receive responses from the DHCP server. The DHCP server can be
made to always broadcast its responses to clients by setting this flag to true
for the relevant scope; relevant scopes would be inside a conditional state-
ment, as a parameter for a class, or as a parameter for a host declaration.
To avoid creating excess broadcast traffic on your network, we recommend
that you restrict the use of this option to as few clients as possible. For
example, the Microsoft DHCP client and dhclient (8) are known not to
have this problem.

always-reply-rfc1048 <flag>;

Some BOOTP clients expect RFC 1048-style responses, but do not follow
RFC 1048 when sending their requests. You can tell that a client is having
this problem if it is not getting the options you have configured for it, and

72 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1048.html
https://datatracker.ietf.org/doc/html/rfc1048.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

if you see in the server log the message "(non-rfc1048)" printed with each
BOOTREQUEST that is logged.

If you want to send RFC 1048 options to such a client, you can set the
always-reply-rfc1048 option in that client's host declaration, and the DHCP
server will respond with an RFC 1048-style vendor options field. This flag
can be set in any scope, and will affect all clients covered that scope.

authoritative;
not authoritative;

The DHCP server will normally assume that the configuration information
about a given network segment is not known to be correct and is not au-
thoritative. This is so that if a naive user installs a DHCP server not fully
understanding how to configure it, it does not send spurious DHCPNAK
messages to clients that have obtained addresses from a legitimate DHCP
server on the network.

Network administrators setting up authoritative DHCP servers for their
networks should always write the authoritative; statement at the top
of their configuration file to indicate that the DHCP server should send
DHCPNAK messages to misconfigured clients. If this is not done, clients
will be unable to get a correct IP address after changing subnets until their
old lease has expired, which could take quite a long time.

Usually, writing authoritative; at the top-level of the configuration file
should be sufficient. However, if a DHCP server is to be set up so that
it is aware of some networks for which it is authoritative and some net-
works for which it is not, it may be more appropriate to declare authority
on a per-network-segment basis.

Note that the most specific scope for which the concept of authority makes
any sense is the physical network segment --- either a shared-network
statement or a subnet statement that is not contained within a shared-
network statement. It is neither meaningful to specify that the server is
authoritative for some subnets within a shared network but not authorita-
tive for others, nor is it meaningful to specify that the server is authoritative
for some host declarations and not others.

boot-unknown-clients <flag>;

If the boot-unknown-clients statement is present and <flag> has a value of
false or off, then clients for which there is no host declaration will not
be allowed to obtain IP addresses. If this statement is not present or <flag>
has a value of true or on, then clients without host declarations will be
allowed to obtain IP addresses as long as those addresses are not restricted
by allow and deny statements within their pool declarations. The default
is true.

2.1. dhcpd.conf --- DHCP server configuration 73

https://datatracker.ietf.org/doc/html/rfc1048.html
https://datatracker.ietf.org/doc/html/rfc1048.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

db-time-format (default | local);

The DHCP server software outputs several timestamps when writing
leases to persistent storage. This configuration parameter selects one of
two output formats. The default format prints the day, date, and time
in UTC, whereas the 1ocal format prints the system seconds-since-epoch
and helpfully provides the day and time in the system timezone in a com-
ment. The time formats are described in detail in dhcpd. Ieases (5).

ddns-hostname <name>;

The <name> parameter should be the hostname that will be used in setting
up the client's A and PTR records. If no ddns-hostname parameter is speci-
tied in scope, then the server will derive the hostname automatically, using
an algorithm that varies for each of the different DNS update methods.

ddns-domainname <name>;

The <name> parameter should be the domain name that will be appended
to the client's hostname to form a fully-qualified domain-name (FQDN).

ddns-local-address4 <address>;
ddns-local-address6 <address>;

The <address> parameter should be the local IPv4 or IPv6 address the server
should use as the source address when sending DDNS update requests.

ddns-rev-domainname <name>;

The <name> parameter should be the domain name that will be appended
to the client's reversed IP address to produce a name for use in the client's
PTR record. By default, this is "in-addr.arpa.", but the default can be
overridden here.

The reversed IP address to which this domain name is appended is always
the IP address of the client in dotted quad notation in reversed order ---
for example, if the IP address assigned to the client is 10.17.92.74, then the
reversed IP address is 74.92.17.10. So a client with that IP address would,
by default, be given a PTRrecord of 10.17.92.74.in-addr.arpa.. See
section 3.5 of RFC 1035 for more information.

ddns-update-style (standard | interim | none);

The style parameter must be one of standard, interim or none. The
ddns-update-style statement is only meaningful in the outer scope --- it
is evaluated once after reading the dhcpd. conf (5) file, rather than each
time a client is assigned an IP address, so there is no way to use different
DNS update styles for different clients. The default is none. See the section
titled Dynamic DNS updates for details about the DDNS update style.

ddns-updates <flag>;

74 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1035.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The ddns-updates parameter controls whether or not the server will at-
tempt to do a DNS update when a lease is confirmed. Set this to false if
server should not attempt to do DNS updates within a certain scope. The
ddns-updates parameter is true by default. To disable DNS updates in all
scopes, it is preferable to use the ddns-update-style statement setting the
style to none.

default-lease-time <time>;

<time> should be the length in seconds that will be assigned to a
lease if the client requesting the lease does not ask for a specific expi-
ration time. This is used for both DHCPv4 and DHCPvV6 leases. It is
also known as the "valid lifetime" in DHCPv6. The default is 43200
seconds.

delayed-ack <count>;
max-ack-delay <microseconds>;

<count> should be an integer value between 0 and 2/16-1, and defaults to
28. The count represents the maximum number of DHCPv4 replies that
will be queued pending transmission until after a database commit event.
If this number is reached, a database commit event (commonly resulting
in fsync (2) and representing a performance penalty) will be made, and
the reply packets will be transmitted in a batch afterwards. This preserves
the RFC 2131 direction that "stable storage" be updated prior to replying to
clients. Should the DHCPv4 sockets "go dry" (i.e., select (2) or equiva-
lent function returns immediately with no read sockets), a commit is made
and any queued packets are transmitted.

Similarly, <microseconds> indicates how many microseconds are permitted
to pass between queuing a packet pending fsync (2), and performing the
fsync (2). Valid values range from 0 to 232-1, and it defaults to 250000
(1/4 of a second).

Error

Check if the delayed-ack feature is compiled in, and whether its default
value should be 0 to turn off the feature by default.

dhcp-cache-threshold <percentage>;

The dhcp-cache-threshold statement takes one integer parameter with al-
lowed values between 0 and 100. The default value is 25 (25% of the lease
time). This parameter expresses the percentage of the total lease time, mea-
sured from the beginning, during which a client's attempt to renew its lease
will result in getting the already assigned lease, rather than an extended

2.1. dhcpd.conf --- DHCP server configuration 75

https://datatracker.ietf.org/doc/html/rfc2131.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

lease.

Clients that attempt renewal frequently can cause the server to update and
write the database frequently resulting in a performance impact on server.
The dhcp-cache-threshold statement instructs the DHCP server to avoid
updating leases too frequently thus avoiding this behavior. Instead, the
server assigns the same lease (i.e. reuses it) with no modifications except
for CLTT (Client Last Transmission Time) which does not require disk op-
erations. This feature applies to IPv4 only.

When an existing lease is matched to a renewing client, it will be reused if
all of the following conditions are true:

1. The dhcp-cache-threshold is larger than zero.
2. The current lease is active.

3. The percentage of the lease time that has elapsed is less than dhcp-
cache-threshold.

4. The client information provided in the renewal does not alter any of
the following:

¢ DNS information and DNS updates are enabled
¢ Billing class to which the lease is associated
* The host declaration associated with the lease

¢ The client ID --- this may happen if a client boots without a client
ID and then starts using one in subsequent requests.

Note that the lease can be reused if the options the client or relay agent
sends are changed. These changes will not be recorded in the in-memory
or on-disk databases until the client renews after the threshold time is
reached.

do-forward-updates <flag>;

The do-forward-updates statement instructs the DHCP server as to
whether it should attempt to update a DHCP client's A record when the
client acquires or renews a lease. This statement has no effect unless DNS
updates are enabled. Forward updates are enabled by default. If this state-
ment is used to disable forward updates, the DHCP server will never at-
tempt to update the client's A record, and will only ever attempt to update
the client's PTR record if the client supplies an FQDN that should be placed
in the PTR record using the fqdn option. If forward updates are enabled,
the DHCP server will still honor the setting of the client-updates flag.

dont-use-fsync <flag>;

The dont-use-fsync statement instructs the DHCP server whether it should
call fsync (2) when writing leases to the lease file. By default, and if
<flag> is set to false, the server will call fsync (2). Suppressing the call
to fsync (2) may increase the performance of the server but it also adds

76 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

a risk that a lease will not be properly written to the disk after it has been
issued to a client and before the server stops. This can lead to duplicate
leases being issued to different clients.

Warning

Using this option is not recommended.

dynamic-bootp-lease-cutoff <date>;

The dynamic-bootp-lease-cutoff statement sets the ending time for all leases
assigned dynamically to BOOTP clients. Because BOOTP clients do not
have any way of renewing leases, and don't know that their leases could
expire, by default dhcpd (8) assigns infinite leases to all BOOTP clients.
However, it may make sense in some situations to set a cutoff date for all
BOOTP leases --- for example, the end of a school term, or the time at night
when a facility is closed and all machines are required to be powered off.

<date> should be the date on which all assigned BOOTP leases will end.
The date is specified in the form:

<W><YYYY>/<MM>/<DD> <HH>:<mm>:<55>

<W> is the day of the week expressed as a number from zero (Sunday) to
six (Saturday). <YYYY> is the year, including the century. <MM?> is the
month expressed as a number from 1 to 12. <DD> is the day of the month,
counting from 1. <HH> is the hour, from zero to 23. <mm> is the minute
and <SS> is the second. The time is always in Coordinated Universal Time
(UTC), not local time.

dynamic-bootp-lease-length <length>;

The dynamic-bootp-lease-length statement is used to set the length of
leases dynamically assigned to BOOTP clients. At some sites, it may be
possible to assume that a lease is no longer in use if its holder has not used
BOOTP or DHCP to get its address within a certain time period. The pe-
riod is specified in <length> as a number of seconds. If a client reboots using
BOOTP during the timeout period, the lease duration is reset to <length>,
so a BOOTP client that boots frequently enough will never lose its lease.
Needless to say, this parameter should be adjusted with extreme caution.

echo-client-id <flag>;

The echo-client-id statement is used to enable or disable RFC 6842 com-
pliant behavior. If the echo-client-id statement is present and has a value
of true or on, and a DHCP DISCOVER or REQUEST is received which
contains the client identifier option (Option code 61), the server will copy
the option into its response (DHCP ACK or NAK) per RFC 6842. In other
words, if the client sends the option it will receive it back. By default, this
flag is of £ and client identifiers will not echoed back to the client.

filename <filename>;

2.1. dhcpd.conf --- DHCP server configuration 77

https://datatracker.ietf.org/doc/html/rfc6842.html
https://datatracker.ietf.org/doc/html/rfc6842.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The filename statement can be used to specify the name of the initial boot
file which is to be loaded by a client. The <filename> should be a filename
recognizable to whatever file transfer protocol the client can be expected to
use to load the file.

fixed-address <address> [, <address> ... |;

The fixed-address declaration is used to assign one or more fixed IP ad-
dresses to a client. It should only appear in a host declaration. If more than
one address is supplied, then when the client boots, it will be assigned the
address that corresponds to the network on which it is booting. If none of
the addresses in the fixed-address statement are valid for the network to
which the client is connected, that client will not match the host declara-
tion containing that fixed-address declaration. Each address in the fixed-
address declaration should be either an IP address or a domain name that
resolves to one or more IP addresses.

fixed-address6 <ip6-address>;

The fixed-address6 declaration is used to assign a fixed IPv6 addresses to
a client. It should only appear in a host declaration.

fixed-prefix6 <low-address> / <bits>;

The fixed-prefix6 declaration is used to assign a fixed IPv6 prefix to a client.
It should only appear in a host declaration, but multiple fixed-prefix6 state-
ments may appear in a single host declaration.

The <low-address> specifies the start of the prefix, and <bits> specifies the
size of the prefix in bits.

If there are multiple prefixes for a given host entry the server will choose
one that matches the requested prefix size or, if none match, the first one.

If there are multiple host declarations the server will try to choose a decla-
ration where the fixed-address6 matches the client's subnet. If none match
it will choose one that doesn't have a fixed-address6 statement.

Note

Unlike the fixed address the fixed prefix does not need to match a subnet
in order to be served. This allows you to provide a prefix to a client that
is outside of the subnet on which the client makes the request to the the
server.

get-lease-hostnames <flag>;

The get-lease-hostnames statement is used to tell dhcpd (8) whether or
not to look up the domain name corresponding to the IP address of each
address in the lease pool and use that address for the DHCP hostname
option. If <flag> is true, then this lookup is done for all addresses in the
current scope. By default, or if <flag> is false, no lookups are done.

78 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

hardware <hardware-type> <hardware-address>;

In order for a BOOTP client to be recognized, its network hardware address
must be declared using a hardware clause in the host statement. <hardware-
type> must be the name of a physical hardware interface type. Currently,
only the ethernet and token-ring types are recognized, although sup-
port for a £ddi hardware type (and others) would also be desirable. The
<hardware-address> should be a set of hexadecimal octets (numbers from 0
through ff) separated by colons. The hardware statement may also be used
for DHCP clients.

host-identifier option <option-name> <option-data>;
host-identifier vérelopt <number> <option-name> <option-data>;

This identifies a DHCPv6 client in a host statement. <option-name> is any
option, and <option-data> is the value for the option that the client will send.
<option-data> must be a constant value. In the vérelopts case the additional
<number> field is the relay to examine for the specified option name and
value. The values are the same as for the vérelay option 0 is a no-op, 1 is
the relay closest to the client, 2 the next one in, and so on. Values that are
larger than the maximum number of relays (currently 32) indicate the relay
closest to the server independent of number.

ignore-client-uids <flag>;

If the ignore-client-uids statement is present and has a value of true or
on, the UID for clients will not be recorded. If this statement is not present
or has a value of false or of £, then client UIDs will be recorded.

infinite-is-reserved <flag>;

dhcpd (8) supports reserved leases. See the section titled Reserved leases for
more details. If this <flag> is true, the server will automatically reserve
leases allocated to clients which requested an infinite (Oxfttfftf) lease-time.
The default is false.

lease-file-name <filename>;

<filename> should be the name of the DHCP server's lease file. By default,
this is /var/1lib/lease/dhcpd. leases. This statement must appear
in the outer scope of the configuration file --- if it appears in some other
scope, it will have no effect. Furthermore, it has no effect if overridden by
dhcpd (8)'s —1f command line argument, or the PATH_DHCPD_DB envi-
ronment variable.

limit-addrs-per-ia <number>;

By default, the DHCPv6 server will limit clients to one IAADDR per IA
option, meaning one address. If you wish to permit clients to hang onto
multiple addresses at a time, configure a larger number here.

2.1. dhcpd.conf --- DHCP server configuration

79

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note that there is no present method to configure the server to forcibly con-
figure the client with one IP address per each subnet on a shared network.
This is left to future work.

dhcpvé-lease-file-name <filename>;

<filename> is the name of the lease file to use if and only if the server is run-
ning in DHCPv6 mode. By default, this is /var/lib/lease/dhcpd6.
leases. This statement, like lease-file-name, must appear in the outer
scope of the configuration file. It has no effect if overridden by dhcpd (8)'s
—1f command line argument, or the PATH_DHCPD6_DB environment vari-
able. If dhcpvé-lease-file-name is not specified, but lease-file-name is, the
latter's value will be used.

lease-id-format (octal | hex);

This parameter governs the format used to write certain values to lease
files. With the default format octal, values are written as quoted strings
in which non-printable characters are represented as octal escapes --- a
backslash character followed by three octal digits. When the hex format
is specified, values are written as an unquoted series of pairs of hexadeci-
mal digits, separated by colons.

Currently, the values written out based on lease-id-format are the server-
duid, the uid (DHCPv4 leases), and the IAID_DUID (DHCPv6 leases).
Note the server automatically reads the values in either format.

local-port <port>;

This statement causes the DHCP server to listen for DHCP requests on the
UDP port specified in port, rather than on port 67.

local-address <address>;

This statement causes the DHCP server to listen for DHCP requests sent to
the specified <address>, rather than requests sent to all addresses. Since
serving directly attached DHCP clients implies that the server must re-
spond to requests sent to the all-ones IP address, this option cannot be used
if clients are on directly attached networks; it is only realistically useful for
a server whose only clients are reached via unicasts, such as via DHCP
relay agents.

Error

Check if this feature is enabled in the Lease builds. This statement is only
effective if the server was compiled using the USE_SOCKETS #define
statement, which is default on a small number of operating systems,
and must be explicitly chosen at compile-time for all others. You can be
sure if your server is compiled with USE_SOCKETS if you see lines of
this format at startup:

Listening on Socket/eth0

80 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note

Since this bind (2)s all DHCP sockets to the specified address, only one
address may be supported in a daemon at a given time.

log-facility <facility>;

This statement causes the DHCP server to do all of its logging on the spec-
ified log <facility> once the dhcpd.conf file has been read. By default,
the DHCP server logs to the daemon facility. Possible log facilities include
auth, authpriv, cron, daemon, ftp, kern, 1pr, mail, mark, news,
ntp, security, syslog, user, uucp, and local0 through local7. Not
all of these facilities are available on all systems, and there may be other
facilities available on other systems. See syslog(3).

In addition to setting this value, you may have to edit your syslog daemon's
configuration file to configure logging of the DHCP server. For example,
you may have to add a line like this to syslog.conft:

local7.debug /var/log/dhcpd.log

The syntax of your syslog daemon may be different based on what imple-
mentation is being used on your machine; please consult the syslog dae-
mon's documentation. To get the syslog daemon to start logging to the
new file, you may first have to create the log file with correct ownership
and permissions (e.g., the same ownership and permissions of your /var/
log/messages file) and restart the syslog daemon. Some systems support
log rotation using a program such as logrotate (8), and you may want
to configure that as well so that your log file doesn't grow uncontrollably.

Because the log-facility setting is configured in the dhcpd.conf file,
log messages printed while parsing dhcpd.conf or before parsing it are
logged to the default log facility. When this setting is configured, the DHCP
server prints its startup message a second time after parsing the configura-
tion file, so that the log will be as complete as possible.

log-threshold-high <percentage>;
log-threshold-low <percentage>;

The log-threshold-low and log-threshold-high statements are used to con-
trol when a message is output about pool usage. The value for both of
them is the percentage of the pool in use. If the high threshold is 0 or has
not been specified, no messages will be produced. If a high threshold is
given, a message is output once the pool usage passes that level. After
that, no more messages will be output until the pool usage falls below the
low threshold. If the low threshold is not given, it defaults to a value of 0.

2.1. dhcpd.conf --- DHCP server configuration 81

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

A special case occurs when the low threshold is set to be higer than the
high threshold. In this case, a message will be generated each time a lease
is acknowledged when the pool usage is above the high threshold.

Note that threshold logging will be automatically disabled for shared sub-
nets whose total number of addresses is larger than (264)-1. The server
will emit a log statement at startup when threshold logging is disabled as
shown below:

"Threshold logging disabled for shared subnet of ranges: <ad-
dresses>"

This is likely to have no practical runtime effect as CPUs are unlikely to
support a server actually reaching such a large number of leases.

max-lease-time <time>;

<time> should be the maximum length in seconds that will be assigned
to a lease. If not defined, the default maximum lease time is 86400. The
only exception to this is that Dynamic BOOTP lease lengths, which are
not specified by the client, are not limited by this maximum.

min-lease-time <time>;

<time> should be the minimum length in seconds that will be assigned
to a lease. The default is the minimum of 300 seconds or max-lease-
time.

min-secs <seconds>;

<seconds> should be the minimum number of seconds since a client began
trying to acquire a new lease before the DHCP server will respond to its
request. The number of seconds is based on what the client reports, and
the maximum value that the client can report is 255 seconds. Generally,
setting this to one will result in the DHCP server not responding to the
client's first request, but always responding to its second request.

This can be used to set up a secondary DHCP server which never offers
an address to a client until the primary server has been given a chance to
do so. If the primary server is down, the client will bind to the secondary
server, but otherwise clients should always bind to the primary. Note that
this does not, by itself, permit a primary server and a secondary server to
share a pool of dynamically-allocatable addresses.

next-server <server-name>;

The next-server statement is used to specify the host address of the server
from which the initial boot file (specified in the filename statement) is to be
loaded. <server-name> should be a numeric IP address or a domain name.

omapi-port <port>;

The omapi-port statement causes the DHCP server to listen for OMAPI
connections on the specified <port>. This statement is required to enable

82 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

the OMAPI protocol, which is used to examine and modify the state of the
DHCP server as it is running.

one-lease-per-client <flag>;

If this flag is enabled, whenever a client sends a DHCPREQUEST for a
particular lease, the server will automatically free any other leases the client
holds. This presumes that when the client sends a DHCPREQUEST, it has
forgotten any lease not mentioned in the DHCPREQUEST, i.e., the client
has only a single network interface and it does not remember leases it's
holding on networks to which it is not currently attached.

Warning

Neither of these assumptions are guaranteed or provable, so we urge
caution in the use of this statement.

pid-file-name <filename>;

<filename> should be the name of the DHCP server's process ID file. This
is the file in which the DHCP server's process ID is stored when the server
starts. By default, this is /run/lease/dhcpd.pid. Like the lease-file-
name statement, this statement must appear in the outer scope of the con-
tiguration file. It has no effect if overridden by dhcpd (8)'s ~pf command
line argument, or the PATH_DHCPD_PID environment variable.

dhcpvé-pid-file-name <filename>;

<filename> should be the name of the DHCP server's process ID file to use if
and only if the server is running in DHCPv6 mode. Like the pid-file-name
statement, this statement must appear in the outer scope of the configura-
tion file. It has no effect if overridden by dhcpd (8)'s -pf command line
argument, or the PATH_DHCPD6_PID environment variable. If dhcpvé-
pid-file-name is not specified, but pid-file-name is, the latter's value will
be used.

ping-check <flag>;

When the DHCP server is considering dynamically allocating an IP ad-
dress to a client, it first sends an ICMP Echo request (a ping) to the address
being assigned. It waits for a second, and if no ICMP Echo response has
been heard, it assigns the address. If a response is heard, the lease is aban-
doned, and the server does not respond to the client. The lease will remain
abandoned for a minimum of abandon-lease-time seconds.

If there are no free addressses but there are abandoned IP addresses, the
DHCP server will attempt to reclaim an abandoned IP address regardless
of the value of abandon-lease-time.

This ping check introduces a default 1 second delay in responding to
DHCPDISCOVER messages, which can be a problem for some clients. The

2.1. dhcpd.conf --- DHCP server configuration 83

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

delay may be configured using the ping-timeout parameter. The ping-
check configuration parameter can be used to control checking --- if its
value is false, no ping check is done.

ping-timeout <seconds>;

If the DHCP server determined it should send an ICMP Echo request (a
ping) because the ping-check statement is true, ping-timeout allows you
to configure how many seconds the DHCP server should wait for an ICMP
Echo response to be heard. If no ICMP Echo response has been received
before the timeout expires, it assigns the address. If a response is heard, the
lease is abandoned, and the server does not respond to the client. If it is not
configured, ping-timeout defaults to 1 second.

preferred-lifetime <seconds>;

IPv6 addresses have valid and preferred lifetimes. The valid lifetime deter-
mines at what point at lease might be said to have expired, and is no longer
useable. A preferred lifetime is an advisory condition to help applications
move off of the address and onto currently valid addresses (should there
still be any open TCP sockets or similar).

The preferred lifetime defaults to 5/8 of the default-lease-time.
prefix-length-mode (ignore | prefer | exact | minimum | maximum);

According to RFC 3633, DHCPv6 clients may specify preferences when so-
liciting prefixes by including an IA_PD Prefix option within the IA_PD op-
tion. Among the preferences that may be conveyed is the prefix-length.
When non-zero it indicates a client's desired length for offered prefixes.
The RFC states that servers "MAY choose to use the information ... to se-
lect prefix(es)" but does not specify any particular rules for doing so. The
prefix-length-mode statement can be used to set the prefix selection rules
employed by the server, when clients send a non-zero prefix-length value.
The mode parameter must be one of ignore, prefer, exact, minimum,
or maximum which are described below:

1. ignore --- The requested length is ignored. The server will offer the
tirst available prefix.

2. prefer --- The server will offer the first available prefix with the same
length as the requested length. If none are found then it will the first
available prefix of any length.

3. exact -—- The server will offer the first available prefix with the same
length as the requested length. If none are found, it will return a status
indicating no prefixes available. This is the default behavior.

4. minimum - The server will offer the first available prefix with the same
length as the requested length. If none are found, it will return the
tirst available prefix whose length is greater than (e.g. longer than),
the requested value. If none of those are found, it will return a sta-
tus indicating no prefixes available. For example, if client requests a

84 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc3633.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

length of /60, and the server has available prefixes of lengths /56 and
/64, it will offer prefix of length /64.

5. maximum - The server will offer the first available prefix with the
same length as the requested length. If none are found, it will return
the first available prefix whose length is less than (e.g. shorter than),
the requested value. If none of those are found, it will return a sta-
tus indicating no prefixes available. For example, if client requests a
length of /60, and the server has available prefixes of lengths /56 and
/64, it will offer a prefix of length /56.

In general "first available" is determined by the order in which pools are
defined in the server's configuration. For example, if a subnet is defined
with three prefix pools A,B, and C:

subnet 3000::/64 {
pool A
pool6 {

}
pool B
pool6 {

}
pool C
pool6 {

}
}

then the pools will be checked in the order A, B, C. For modes prefer,
minimum, and maximum this may mean checking the pools in that order
twice. A first pass through is made looking for an available prefix of exactly
the preferred length. If none are found, then a second pass is performed
starting with pool A but with appropriately adjusted length criteria.

The default is mode exact.

remote-port <port>;

This statement causes the DHCP server to transmit DHCP responses to
DHCP clients upon the UDP port specified in <port>, rather than on port
68. In the event that the UDP response is transmitted to a DHCP Relay,
the server generally uses the local-port configuration value. Should the
DHCP Relay happen to be addressed as 127.0.0.1, however, the DHCP
Server transmits its response to the remote-port configuration value.

Note

This is generally only useful for testing purposes, and this configuration

2.1. dhcpd.conf --- DHCP server configuration 85

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

value should generally not be used.

server-identifier <hostname>;

The server-identifier statement can be used to define the value that is sent
in the DHCP Server Identifier option for a given scope. The value specified
must be an IP address for the DHCP server, and must be reachable by all
clients served by a particular scope.

The use of the server-identifier statement is not recommended --- the only
reason to use it is to force a value other than the default value to be sent on
occasions where the default value would be incorrect. The default value is
the first IP address associated with the physical network interface on which
the request arrived.

The usual case where the server-identifier statement needs to be sent is
when a physical interface has more than one IP address, and the one be-
ing sent by default isn't appropriate for some or all clients served by that
interface. Another common case is when an IP address alias is defined for
the purpose of having a consistent IP address for the DHCP server, and it
is desired that the clients use this IP address when contacting the server.

Supplying a value for the dhcp-server-identifier option is equivalent to
using the server-identifier statement.

server-id-check <flag>;

The server-id-check statement is used to control whether or not a server,
participating in failover, verifies that the value of the dhcp-server-
identifier option in received DHCP REQUESTs match the server's ID before
processing the request. Server ID checking is disabled by default. Setting
this flag enables ID checking and thereafter the server will only process
requests that match.

Note

The flag setting should be consistent between failover partners.

Unless overridden by use of the server-identifier statement, the value the
server uses as its ID will be the first IP address associated with the physical
network interface on which the request arrived.

In order to reduce runtime overhead the server only checks for a server
ID option in the global and subnet scopes. Complicated configurations
may result in different server IDs for this check and when the server ID
for a reply packet is determined, which would prohibit the server from
responding.

The primary use for this option is when a client broadcasts a request but
requires that the response come from a specific failover peer. An example

86 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

of this would be when a client reboots while its lease is still active --- in this
case both servers will normally respond. Most of the time the client won't
check the server ID and can use either of the responses. However if the
client does check the server ID it may reject the response if it came from the
wrong peer. If the timing is such that the "wrong" peer responds first most
of the time the client may not get an address for some time.

Note

Care should be taken before enabling this option.

server-duid LLT [<hardware-type> <timestamp> <hardware-address> |;
server-duid EN <enterprise-number> <enterprise-identifier>;
server-duid LL [<hardware-type> <hardware-address> |;

The server-duid statement configures the server DUID. You may pick ei-
ther LLT (link local address plus time), EN (enterprise), or LL (link local).

If you choose LLT or LL, you may specify the exact contents of the DUID.
Otherwise the server will generate a DUID of the specified type.

If you choose EN, you must include the <enterprise-number> and the
<enterprise-identifier>.

If there is a server-duid statement in the lease file, it will take precedence
over the server-duid statement from the config file and a dhcpé.server-id
option in the config file will override both.

The default server-duid type is LLT.
server-name <name>;

The server-name statement can be used to inform the client of the name of
the server from which it is booting. <name> should be the name that will
be provided to the client.

dhcpvé-set-tee-times <flag>;

The dhcpvé6-set-tee-times statement enables setting T1 and T2 to the val-
ues recommended in RFC 3315 section 22.4. When setting T1 and T2, the
server will use dhcp-renewal-time and dhcp-rebinding-time respectively.
A value of 0 tells the client it may choose its own value.

When those options are not defined then values will be set to 0 unless the
global dhcpvé-set-tee-times parameter is enabled. When this option is en-
abled, the times are calculated as recommended by RFC 3315 section 22.4:

T1 will be set to 0.5 times the shortest preferred lifetime in the reply. If the
"shortest" preferred lifetime is OxXFFFFFFFF, T1 will set to OXFFFFFFFFE.

2.1. dhcpd.conf --- DHCP server configuration 87

https://datatracker.ietf.org/doc/html/rfc3315.html
https://datatracker.ietf.org/doc/html/rfc3315.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

T2 will be set to 0.8 times the shortest preferred lifetime in the reply. If the
"shortest" preferred lifetime is OXFFFFFFFF, T2 will set to OxFFFFFFFE.

Keep in mind that given sufficiently small lease lifetimes, the above calcu-
lations will result in the two values being equal. For example, a 9 second
lease lifetime would yield T1 = T2 = 4 seconds, which would cause clients
to issue rebinds only. In such a case it would likely be better to explicitly
define the values.

Warning

dhcpvé-set-tee-times is intended to be transitional and will likely be re-
moved in a future release. Once removed the behavior will be to use the
configured values when present or calculate them per the REC. If you
want zeros, define them as zeros.

site-option-space <name>;

The site-option-space statement can be used to determine from what op-
tion space site-local options will be taken. This can be used in much the
same way as the vendor-option-space statement. Site-local options in
DHCP are those options whose numeric codes are greater than 224. These
options are intended for site-specific uses, but are frequently used by ven-
dors of embedded hardware that contains DHCP clients. Because site-
specific options are allocated on an ad-hoc basis, it is quite possible that
one vendor's DHCP client might use the same option code that another
vendor's client uses, for different purposes. The site-option-space option
can be used to assign a different set of site-specific options for each such
vendor, using conditional evaluation (see dhcp-eval (5) for details).

stash-agent-options <flag>;

If the stash-agent-options parameter is true for a given client, the server
will record the relay agent information options sent during the client's ini-
tial DHCPREQUEST message when the client was in the SELECTING state
and behave as if those options are included in all subsequent DHCPRE-
QUEST messages sent in the RENEWING state. This works around a prob-
lem with relay agent information options, which is that they usually do not
appear in DHCPREQUEST messages sent by the client in the RENEWING
state, because such messages are unicast directly to the server, and are not
sent through a relay agent.

update-conflict-detection <flag>;

If the update-conflict-detection parameter is true, the server will perform
standard DHCID multiple-client, one-name conflict detection. If the pa-
rameter has been set false, the server will skip this check and instead sim-
ply tear down any previous bindings to install the new binding without
question. The default is true.

update-optimization <flag>;

88 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

If the update-optimization parameter is false for a given client, the server
will attempt a DNS update for that client each time the client renews its
lease, rather than only attempting an update when it appears to be neces-
sary. This will allow the DNS to heal from database inconsistencies more
easily, but the cost is that the DHCP server must do many more DNS up-
dates. We recommend leaving this option enabled, which is the default. If
this parameter is not specified, or is true, the DHCP server will only update
when the client information changes, when the client gets a different lease,
or when the client's lease expires.

update-static-leases <flag>;

The update-static-leases flag, if enabled, causes the DHCP server to do
DNS updates for clients even if those clients are being assigned their IP ad-
dress using a fixed-address statement --- that is, the client is being given
a static assignment. It is not recommended because the DHCP server has
no way to tell that the DNS update has been done, and therefore will not
delete the record when it is not in use. Also, the server must attempt the
DNS update each time the client renews its lease, which could have a sig-
nificant performance impact in environments that place heavy demands on
the DHCP server.

use-eui-64 <flag>;

Warning

Support for this parameter must be enabled at compile time; see EUI_64
in includes/site.h.

The use-eui-64 flag, if enabled, instructs the server to construct an address
using the client's EUI-64 DUID (Type 3, HW Type EUI-64), rather than cre-
ating an address using the dynamic algorithm. This means that a given
DUID will always generate the same address for a given pool and further
that the address is guaranteed to be unique to that DUID. The IPv6 address
will be calculated from the EUI-64 link layer address, conforming to RFC
2373, unless there is a host declaration for the client-id.

The range6 statement for EUI-64 must define full /64 bit ranges. Invalid
ranges will be flagged during configuration parsing as errors. See the fol-
lowing example:

subnet6 fc00:ed::/64 ({
use—-eui-64 true;
range6 fc00:ed::/64;

}

The statement may be specified down to the pool level, allowing a mixture
of dynamic and EUI-64 based pools.

During lease file parsing, any leases which map to an EUI-64 pool, that

2.1. dhcpd.conf --- DHCP server configuration 89

https://datatracker.ietf.org/doc/html/rfc2373.html
https://datatracker.ietf.org/doc/html/rfc2373.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

have a non-EUI-64 DUID or for which the lease address is not the EUI-64
address for that DUID in that pool, will be discarded.

If a host declaration exists for the DUID, the server grants the address
(fixed-prefix6, fixed-address6) according to the host declaration, regard-
less of the DUID type of the client (even for EUI-64 DUIDs).

If a client requests an EUI-64 lease for a given network, and the resultant
address conflicts with a fixed address reservation, the server will send the
client a "no addresses available" response.

Any client with a non-conforming DUID (not type 3 or not hw type EUI-64)
that is not linked to a host declaration, which requests an address from an
EUI-64 enabled pool will be ignored and the event will be logged.

Pools that are configured for EUI-64 will be skipped for dynamic allocation.
If there are no pools in the shared network from which to allocate, the client
will get back a no addresses available status.

On an EUI-64 enabled pool, any client with a DUID 3, HW Type EUI-64, re-
questing a solicit/renew and including IA_NA that do not match the EUI-
64 policy, they will be treated as though they are "outside" the subnet for a
given client message:

* Solicit - Server will advertise with EUI-64 ia suboption, but with rapid
commit off

* Request - Server will send "an address not on link status"”, and no ia
suboption

* Renew/Rebind - Server will send the requested address ia suboption
with lifetimes of 0, plus an EUI-64 ia

use-host-decl-names <flag>;

If the use-host-decl-names parameter is true in a given scope, then for ev-
ery host declaration within that scope, the name provided for the host dec-
laration will be supplied to the client as its hostname. So, for example:

group {
use—host—-decl—names on;

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address Jjoe.example.com;
}
}

is equivalent to

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address Jjoe.example.com;

(continues on next page)

90 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)
option host-name "joe";

}

Additionally, enabling use-host-decl-names instructs the server to use the
host declaration name in the the forward DNS name, if no other values are
available. This value selection process is discussed in more detail in the
section titled Dynamic DNS updates.

An option host-name statement within a host declaration will override the
use of the name in the host declaration.

It should be noted here that most DHCP clients completely ignore the host-
name option sent by the DHCP server, and there is no way to configure
them not to do this. So you generally have a choice of either not having
any hostname to client IP address mapping that the client will recognize,
or doing DNS updates. It is beyond the scope of this document to describe
how to make this determination.

use-lease-addr-for-default-route <flag>;

If the use-lease-addr-for-default-route parameter is true in a given scope,
then instead of sending the value specified in the routers option (or sending
no value at all), the IP address of the lease being assigned is sent to the
client. This supposedly causes Win95 machines to ARP for all IP addresses,
which can be helpful if your router is configured for proxy ARP.

Warning

The use of this feature is not recommended, because it won't work for
many DHCP clients.

vendor-option-space <string>;

The vendor-option-space parameter determines from what option space
vendor options are taken. The use of this configuration parameter is il-
lustrated in the dhcp-options (5) manual page in the section on vendor
encapsulated options.

2.1.14 Setting parameter values using expressions

Sometimes it's helpful to be able to set the value of a DHCP server parameter based
on some value that the client has sent. To do this, you can use expression evalua-
tion. Idhcp-eval (5) describes how to write expressions. To assign the result of an
evaluation to an option, define the option as follows:

<my-parameter> = <expression>;

For example:

2.1. dhcpd.conf --- DHCP server configuration 91

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

ddns—-hostname = binary-to-ascii (16, 8, "-",
substring (hardware, 1, 6));

2.1.15 Reserved leases

It's often useful to allocate a single address to a single client, in approximate perpetu-
ity. Host statements with fixed-address clauses exist to a certain extent to serve this
purpose, but because host statements are intended to approximate static configuration,
they suffer from not being referenced in a littany of other server services, such as dy-
namic DNS, failover, on events and so forth.

If a standard dynamic lease, as from any range statement, is marked reserved, then
the server will only allocate this lease to the client it is identified by (be that by client
identifier or hardware address).

In practice, this means that the lease follows the normal state engine, enters ACTIVE
state when the client is bound to it, expires, or is released, and any events or services
that would normally be supplied during these events are processed normally, as with
any other dynamic lease. The only difference is that failover servers treat reserved
leases as special when they enter the FREE or BACKUP states --- each server applies
the lease into the state it may allocate from --- and the leases are not placed on the
queue for allocation to other clients. Instead they may only be found by client identity.
The result is that the lease is only offered to the returning client.

Care should probably be taken to ensure that the client only has one lease within a
given subnet that it is identified by.

Leases may be set reserved either through OMAPI, or through the infinite-is-reserved
configuration option (if this is applicable to your environment and mixture of clients).

It should also be noted that leases marked reserved are effectively treated the same as
leases marked bootp.

2.1.16 References
DHCP option statements are documented in the dhcp-options (5) manual page.

Expressions used in DHCP opt ion statements and elsewhere are documented in the
dhcp-eval (5) manual page.

2.1.17 Files
/etc/lease/dhcpd.conf

The configuration file for the dhcpd (8) program.

92 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.1.18 See also

dhcpd (8), dhcp-options (5), dhcp—-eval (5), dhcpd. leases (5)

2.1.19 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2017 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

2.2 dhcpd. leases --- DHCP lease database

2.2.1 Description

dhcpd (8) keeps a persistent database of leases that it has assigned. This database is
a free-form ASCII file containing a series of lease declarations. Every time a lease is
acquired, renewed or released, its new value is recorded at the end of the lease file.
So if more than one declaration appears for a given lease, the last one in the file is the
current one.

dhcpd (8) requires that a lease database file be present before it will start. To create
the initial lease database, an empty file may be created at the path /var/l1ib/lease/
dhcpd. leases using the touch (1) program:

touch /var/lib/lease/dhcpd.leases

In order to prevent the lease database from growing without bound, the file is rewrit-
ten from time to time. First, a temporary lease database is created and all known leases
are dumped to it. Then, the old lease database is renamed to /var/1lib/lease/
dhcpd. leases~. Finally, the newly written lease database is moved into place.

In order to process both DHCPv4 and DHCPv6 messages, two separate instances of
the dhcpd (8) process will need to be run. Each of these instances will need its own
lease file. dhepd's —1f command line argument may be used to specify a different
lease filename for one or both servers.

2.2.2 Format

Lease descriptions are stored in a format that is parsed by the same recursive descent
parser used to read the dhcpd. conf (5) and dhclient.conf (5) files. Lease files
can contain lease declarations, and also group and subgroup declarations, host dec-
larations and failover state declarations. Group, subgroup, and host declarations are
used to record objects created using the OMAPI protocol.

The lease file is a log-structured file --- whenever a lease changes, the contents of that
lease are written to the end of the file. This means that it is entirely possible and quite
reasonable for there to be two or more declarations of the same lease in the lease file at
the same time. In that case, the instance of that particular lease that appears last in the
file is the one that is in effect.

2.2. dhcpd. leases --- DHCP lease database 93

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Group, subgroup, and host declarations in the lease file are handled in a similar man-
ner, except that if any of these objects are deleted, a rubout is written to the lease file.
This is just the same declaration, with { deleted; } in the scope of the declaration.
When the lease file is rewritten, any such rubouts that can be eliminated are elimi-
nated. It is possible to delete a declaration in the dhcpd. conf (5) file; in this case,
the rubout can never be eliminated from the dhcpd. leases file.

2.2.3 Common statements for lease declarations

While the lease file formats for DHCPv4 and DHCPv6 are different they share many
common statements and structures. This section describes the common statements
while the succeeding sections describe the protocol specific statements.

2.2.3.1 Dates

A date is specified in two ways, depending on the configuration value for the
db-time-format parameter. If it was set to default, then the date fields appear as
follows:

<weekday> <year>/<month>/<day> <hour>:<minute>:<second>

The weekday is present to make it easy for a human to tell when a lease expires --- it
is specified as a number from 0 to 6, with 0 being Sunday. The day of week is ignored
on input. The year is specified with the century, so it should generally be four digits
except for really long leases. The month is specified as a number starting with 1 for
January. The day of the month is likewise specified starting with 1. The hour is a
number between 0 and 23, the minute a number between 0 and 59, and the second
also a number between 0 and 59.

Lease times are specified in Universal Coordinated Time (UTC), not in the local time
zone. There is probably nowhere in the world where the times recorded on a lease are
always the same as wall clock times. On most POSIX machines, the current time in
UTC can be displayed by running the date (1) program:

date -u

If the db-t ime-format was configured to 1ocal, then the date fields appear as fol-
lows:

epoch <seconds-since-epoch>; # <day-name> <month-name> <day-number>
<hours>:<minutes>:<seconds> <year>

The <seconds-since-epoch> value is as according to the system's local clock (often re-
ferred to as "unix time"). The # symbol starts a comment that describes what actual
time this is as according to the system's configured timezone, at the time the value was
written. It is provided only for human inspection.

If a lease will never expire, date is written as the literal never instead of an actual
date.

94 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.2.3.2 General variables

As part of the processing of a lease, information may be attached to the lease structure,
for example, the DDNS information, or if a variable is specified in the configuration
tile. Some of these, like the DDNS information, have specific descriptions below. For
others, such as any variables that are specified, a generic line of the following will be

included.
set <variable> = <value>;

The set statement sets the value of a variable on the lease. For general
information on variables, see the dhcp-eval (5) manual page.

2.2.3.3 DDNS Variables
ddns-text

This variable is used to record the value of the client's identification record
when the server has updated DNS for a particular lease. The TXT record is
used with the interim DDNS update style.

ddns-dhcid

This variable is used to record the value of the client's identification record
when the server has updated DNS for a particular lease. The DHCID record
is used for the standard DDNS update style.

ddns-fwd-name

This variable records the value of the DNS name used in updating the
client's address record if a DDNS update has been successfully done by
the server. The server may also have used this name to update the client's
PTR record.

ddns-client-fqdn

If the server is configured both to use the interim or standard DDNS update
style, and to allow clients to update their own FQDNs, then if the client did
in fact update its own FQDN, the ddns-client-fqgdn variable records
the DNS name that the client has indicated it is using. This is the name that
the server will have used to update the client's PTR record in this case.

ddns-rev-name

If the server successfully updates the client's PTR record, this variable
will record the DNS name that the DHCP server used for the PTR
record. The DNS name to which the PTR record points will be either the
ddns-fwd-name or the ddns-client-fgdn.

2.2.4 Executable statements
on <event> [| <event> ... | { <statement> ... }

The on statement records a list of statements to execute if a certain <event>
occurs. The possible events that can occur for an active lease are release

2.2. dhcpd. leases --- DHCP lease database

95

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

and expiry. More than one event can be specified --- if so, the events are
separated by | characters.

authoring-byte-order <big-endian | little-endian>;

This statement is automatically added to the top of new lease files by the
server. It indicates the internal byte order of the server. This permits lease
tiles generated on a server with one form of byte order to be read by a
server with a different form. Lease files which do not contain this entry are
simply treated as having the same byte order as the server reading them. If
you are migrating lease files generated by a server that predates this state-
ment and is of a different byte order than the your destination server, you
can manually add this statement. It must proceed any lease entries. Valid
values for this parameter are 1ittle-endian and big-endian.

2.2.5 The DHCPv4 lease declaration

lease <ip-address> { <statement> ... }

Each lease declaration includes the single IP address that has been leased
to the client. The statements within the braces define the duration of the
lease and to whom it is assigned.

starts <date>;
Records the start time of a lease.

See the description of dates in the section titled Common statements for lease
declarations.

ends <date>;
Records the end time of a lease.

See the description of dates in the section titled Common statements for lease
declarations.

tstp <date>;

Present if the failover protocol is being used. Indicates what time the peer
has been told the lease expires.

See the description of dates in the section titled Comimon statements for lease
declarations.

tsfp <date>;

Present if the failover protocol is being used. Indicates the lease expiry time
that the peer has acknowledged.

See the description of dates in the section titled Comimon statements for lease
declarations.

atsfp <date>;

The actual time sent from the failover partner.

96 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

See the description of dates in the section titled Common statements for lease
declarations.

cltt <date>;
The client's last transaction time.

See the description of dates in the section titled Common statements for lease
declarations.

hardware <hardware-type> <mac-address>;

Records the MAC address of the network interface on which the lease will
be used. It is specified as a series of hexadecimal octets, separated by
colons.

uid <client-identifier>;

Records the client identifier used by the client to acquire the lease. Clients
are not required to send client identifiers, and this statement only appears if
the client did in fact send one. Client identifiers are normally an ARP type
(1 for Ethernet) followed by the MAC address, just like in the hardware
statement, but this is not required.

The client identifier is recorded as a colon-separated hexadecimal list or
as a quoted string. If it is recorded as a quoted string and it contains one
or more non-printable characters, those characters are represented as octal
escapes --- a backslash character followed by three digits. The format used
is determined by the lease-id-format parameter, which defaults to octal.

client-hostname <hostname>;

Most DHCP clients will send their hostname in the host —name option. If a
client sends its hostname in this way, the hostname is recorded on the lease
with a client-hostname statement. This is not required by the protocol,
however, so many specialized DHCP clients do not send a host-name
option.

binding state <state>;

The binding state statement declares the lease's binding state. When the
DHCP server is not configured to use the failover protocol, a lease's bind-
ing state may be active, free or abandoned. The failover protocol adds
some additional transitional states, as well as the backup state, indicates
that the lease is available for allocation by the failover secondary. Please
see dhcpd. conf (5) for more information about abandoned leases.

next binding state <state>;

The next binding state statement indicates what state the lease will move
to when the current state expires. The time when the current state expires
is specified in the ends statement.

rewind binding state <state>;

2.2. dhcpd. leases --- DHCP lease database

97

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This statement is part of an optimization for use with failover. This helps a
server rewind a lease to the state most recently transmitted to its peer.

option agent.circuit-id <string>;
option agent.remote-id <string>;

These statements are used to record the circuit ID and remote ID options
sent by the relay agent, if the relay agent uses the relay agent information
option. This allows these options to be used consistently in conditional
evaluations even when the client is contacting the server directly rather
than through its relay agent.

vendor-class-identifier variable

The server retains the client-supplied Vendor Class Identifier option for
informational purposes, and to render them in DHCPLEASEQUERY re-
sponses.

bootp;

Indicates that the BOOTP failover flag should be set. BOOTP dynamic
leases are treated differently than normal dynamic leases, as they may only
be used by the client to which they are currently allocated.

reserved;

Indicates that the RESERVED failover flag should be set. RESERVED dy-
namic leases are treated differently than normal dynamic leases, as they
may only be used by the client to which they are currently allocated.

Additional options or executable statements may be included, see the description of
them in the section titled Common statements for lease declarations.

2.2.6 The DHCPv6 lease (I1A) declaration
ia_ta <IAID_DUID> { <statement> ... }
ia_na <IAID_DUID> { <statement> ... }
ia_pa <IAID_DUID> { <statement> ... }

Each lease declaration starts with a tag indicating the type of the lease.
ia_ta is for temporary addresses, ia_na is for non-temporary addresses and
ia_pd is for prefix delegation. Following this tag is the combined IAID and
DUID from the client for this lease.

The <IAID_DUID> value is recorded as a colon-separated hexadecimal list
or as a quoted string. If it is recorded as a quoted string and it contains one
or more non-printable characters, those characters are represented octal es-
capes --—- a backslash character followed by three octal digits. The format
used is governed by the lease-id-format parameter, which defaults to octal.

cltt <date>;

The client's last transaction time.

98 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

See the description of dates in the section titled Common statements for lease
declarations.

iaaddr <ipv6-address> | <statement> ... }
iaprefix <ipv6-address>/ <prefix-length> { <statement> ... }

Within a given lease there can be multiple iaaddr and iaprefix statements.
Each will have either an IPv6 address or an IPv6 prefix (an address and a
prefix length indicating a CIDR style block of addresses). The following
statements may occur within each iaaddr or iaprefix.

binding state <state>;

The binding state statement declares the lease's binding state. In DHCPv®6,
it will normally be active or expired.

preferred-life <lifetime>;

The IPv6 preferred lifetime associated with this address, in seconds.
max-life <lifetime>;

The valid lifetime associated with this address, in seconds.
ends <date>;

Records the end time of a lease.

See the description of dates in the section titled Common statements for lease
declarations.

Additional options or executable statements may be included, see the description of
them in the section titled Common statements for lease declarations.

2.2.7 The failover peer state declaration

The state of any failover peering arrangements is also recorded in the lease file, using
the failover peer statement:

failover peer <name> state { my state <state> at <date>; peer state <state> at <date>;

The states of the peer named name is being recorded. Both the state of
the running server (my state) and the other failover partner (peer state)
are recorded. The following states are possible: unknown-state,
partner-down, normal, communications—interrupted,
resolution—-interrupted, potential-conflict, recover,
recover—done, shutdown, paused, and startup.

2.2.8 Files
/var/lib/lease/dhcpd. leases
The DHCP leases file.

/var/lib/lease/dhcpd.leases~

2.2. dhcpd. leases --- DHCP lease database 99

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Old DHCP leases file.
/var/lib/lease/dhcpd6.leases
The DHCPV6 leases file.
/var/lib/lease/dhcpd6.leases~
Old DHCPV6 leases file.

2.2.9 See also
dhcpd (8), dhcp-options (5), dhcp—eval (5), dhcpd.conft (5)

2.2.10 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2016 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

2.3 dhclient.conf --- DHCP client configuration

2.3.1 Description

dhclient.conf is the configuration file for dhclient (8), the DHCP client pro-
gram.

dhclient.conf is a free-form ASCII text file. It is parsed by the recursive-descent
parser built into dhclient (8). The file may contain extra tabs and newlines for
formatting purposes. Keywords in the file are case-insensitive. Comments may be
placed anywhere within the file, except within quotes. Comments begin with the #
character and end at the end of the line.

The dhclient . conf file can be used to configure the behaviour of the client in a wide
variety of ways: protocol timing, information requested from the server, information
required of the server, defaults to use if the server does not provide certain informa-
tion, values with which to override information provided by the server, or values to
prepend or append to information provided by the server. The configuration file can
also be preinitialized with addresses to use on networks that don't have DHCP servers.

2.3.2 Protocol timing

The timing behaviour of the client need not be configured by the user. If no timing
configuration is provided by the user, a fairly reasonable timing behaviour will be used
by default --- one which results in fairly timely updates without placing an inordinate
load on the server.

If required the following statements can be used to adjust the timing behaviour of
the DHCPv4 client. The DHCPv6 protocol provides values to use and they are not
currently configurable for DHCPv®6.

100 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

timeout <time>;

The timeout statement determines the amount of time that must pass be-
tween the time that the client begins to try to determine its address the time
that it decides that it's not going to be able to contact a server. By default,
this timeout is 60 seconds. After the timeout has passed, if there are any
static leases defined in the configuration , or any leases remaining in the
lease database that have not yet expired, the client will loop through these
leases attempting to validate them, and if it finds one that appears to be
valid, it will use lease's address. If there are no valid static leases or unex-
pired leases in the lease database, the client will restart the protocol after
the defined retry interval.

retry <time>;

The retry statement determines the time that must pass after the client has
determined that there is no DHCP server present before it tries again to
contact a DHCP server. By default, this is 5 minutes.

select-timeout <time>;

It is possible (some might say desirable) for there to be more than one
DHCP server serving any given network. In this case, it is possible that
a client may be sent more than one offer in response to its initial lease dis-
covery message. It may be that one of these offers is preferable to the other
(e.g., one offer may have the address the client previously used, and the
other may not).

select-timeout configures the time after the client sends its first lease dis-
covery request at which it stops waiting for offers from servers, assuming
that it has received at least one such offer. If no offers have been received
by the time the select-timeout has expired, the client will accept the first
offer that arrives. By default, the timeout is 0 seconds, i.e., the client will
take the first offer it sees.

reboot <time>;

When the client is restarted, it first tries to reacquire the last address it had.
This is called the INIT-REBOOT state. If it is still attached to the same
network it was attached to when it last ran, this is the quickest way to get
started. The reboot statement sets the time that must elapse after the client
tirst tries to reacquire its old address before it gives up and tries to discover
a new address. By default, the reboot timeout is 10 seconds.

backoff-cutoff <time>;

The client uses an exponential backoff algorithm with some randomness,
so that if many clients try to configure themselves at the same time, they
will not make their requests in lockstep. The backoff-cutoff statement de-
termines the maximum amount of time that the client is allowed to back off,
the actual value will be evaluated randomly between 1/2 to 11/2 times the
<time> specified. It defaults to 15 seconds.

2.3. dhclient.conf --- DHCP client configuration 101

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

initial-interval <time>;

The initial-interval statement sets the amount of time between the first
attempt to reach a server and the second attempt to reach a server. Each
time a message is sent, the interval between messages is incremented by
the current interval multiplied by a random number between 0 and 1. If
it is greater than the backoff-cutoff amount, it is set to that amount. It
defaults to 10 seconds.

initial-delay <time>;

The initial-delay statement sets the maximum time client can wait after
start before commencing first transmission. According to RFC 2131 section
4.4.1, a client should wait for a random time between startup and the actual
tirst transmission. It defaults to 0 seconds.

2.3.3 DHCPV6 lease selection

In the DHCPv6 protocol the client will wait a small amount of time to allow ADVER-
TISE messages from multiple servers to arrive. It will then need to choose from all
of the messages that may have arrived before proceeding to making a request of the
selected server.

The first selection criteria is the set of options and addresses in the message. Mes-
sages that don't include an option specified as required will be given a score of 0 and
not used. If the dhclient (8) —-R command line argument is used, then messages
that don't include the correct number of bindings (IA-NA, IA-TA or IA-PD) will be
discarded.

The next criteria is the preference value from the message, with the highest preference
value being used even if leases with better addresses or options are available.

Finally the lease is scored and the lease with the highest score is selected. A lease's
score is based on the number of bindings, number of addresses and number of options
it contains:

bindings * X + addresses % Y + options

By default X=10000 and Y=100. This will cause the client to select a lease with more
bindings, over a lease with less bindings but more addresses. The weightings were
changed as part of implementing 7550. Previously they were X=50 and Y=100 mean-
ing more addresses were preferred over more bindings.

2.3.4 Lease requirements and requests

The DHCP protocol allows the client to request that the server send it specific informa-
tion, and not send it other information that it is not prepared to accept. The protocol
also allows the client to reject offers from servers if they don't contain information the
client needs, or if the information provided is not satisfactory.

There is a variety of data contained in offers that DHCP servers send to DHCP clients.
The data that can be specifically requested are called DHCP options. DHCP options

102 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc2131.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

are defined in dhcp—options (5).
The following are lease requirement and request related statements:
[also | request [[<option-space> . | <option>]][, ...];

The request statement causes the client to request that any server re-
sponding to the client send the client its values for the specified op-
tions. Only the option names should be specified in the request state-
ment --- not option parameters. By default, the DHCPv4 client requests
the subnet-mask, broadcast—-address, time-offset, routers,
domain-name, domain-name-servers, and host-name options while
the DHCPv6 client requests the dhcp6.name-servers and dhcpé6.
domain-search options.

Note

If a request statement is specified, these defaults are overridden and
these options will not be requested.

In some cases, it may be desirable to send no parameter request list at all.
This can be configured by using the following statement without any argu-
ments:

request;

In most cases, it is desirable to simply add one option to the request list
which is of interest to the client in question. In this case, the also keyword
may be used. For example:

also request domain-search, dhcp6.sip-servers-
—addresses;

[also] require [[<option-space> .]| <option>1]], ... |;

The require statement lists options that must be sent in order for an offer to
be accepted. Offers that do not contain all the listed options will be ignored.
There is no default require list.

An example of using the require statement follows:

require name-servers;

interface ethO {
also require domain-search;

}

send <option declaration>;

The send statement causes the client to send the specified option to the
DHCP server with the specified value. This is a full option declaration

2.3. dhclient.conf --- DHCP client configuration 103

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

as described in dhcp-options (5). Options that are always sent in the
DHCP protocol should not be specified here, except that the client can spec-
ify arequested dhcp-1lease-t ime option other than the default requested
lease time, which is 2 hours. The other obvious use for this statement is to
send information to the server that will allow it to differentiate between
this client and other clients or kinds of clients.

2.3.5 Dynamic DNS updates

dhclient (8) now has some very limited support for doing DNS updates when a
lease is acquired. Note that everything in this section is true whether DHCPv4 or
DHCPV6 is used. The exact same syntax is used for both.

A key and zone have to be declared, as in the DHCP server (see dhcpd. conf (5) for
details). The £gdn option also has to be configured on the client as follows:

send fgdn.fgdn "grosse.example.com.";
send fgdn.encoded on;

send fgdn.server—update off;

also request fgdn, dhcp6.fqgdn;

The fgdn. fgdn option MUST be a fully-qualified domain name. A zone statement
must be defined for the zone that is to be updated. The fgdn.encoded option may
need to be set to on or of £, depending on the DHCP server that is used.

The following are DDNS related statements:
do-forward-updates <flag>;

If DNS wupdates must be done in the DHCP client script (see
dhclient-script (8)) rather than having the DHCP client do the up-
date directly --- for example, if SIG(0) authentication has to be used, which
is not supported directly by the DHCP client --- the DHCP client can be
configured not to do the DNS update using the do-forward-updates state-
ment. <flag> should be true if the DHCP client must do the DNS update,
and false if the DHCP client must NOT do the DNS update. The default is
true, i.e., dhclient (8) will do the DNS update.

2.3.6 Option modifiers

In some cases, a DHCP client may receive option data from the DHCP server which
is not really appropriate for that client, or may not receive information that it needs,
and for which a useful default value exists. It may also receive information which is
useful, but which needs to be supplemented with local information. To handle these
needs, several option modifiers statements are available:

default <option declaration>;

If for some option the client should use the value supplied by the server,
but needs to use some default value if no value was supplied by server,
these values can be defined in the default statement.

104 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

supersede <option declaration>;

If for some option the client should always use a locally-configured or val-
ues rather than whatever is supplied by the server, these can be defined in
the supersede statement.

prepend <option declaration>;

If for some set of options the client should use a value you supply, and then
use the values supplied by the server, if any, these values can be defined
in the prepend statement. The prepend statement can only be used for
options which allow more than one value to be given. This restriction is
not enforced --- if you ignore it, the behaviour will be unpredictable.

append <option declaration>;

If for some set of options the client should first use the values supplied
by the server, if any, and then use values you supply, these values can be
defined in the append statement. The append statement can only be used
for options which allow more than one value to be given. This restriction
is not enforced --- if you ignore it, the behaviour will be unpredictable.

2.3.7 Lease declarations
lease { <lease-declaration> | ... <lease-declaration>]}

The DHCP client may decide after some period of time (see the section on Protocol
timing) that it is not going to succeed in contacting a server. At that time, it consults its
own database of old leases and tests each one that has not yet timed out by pinging the
listed router for that lease to see if that lease could work. It is possible to define one or
more fixed leases in the client configuration file for networks where there is no DHCP
or BOOTP service, so that the client can still automatically configure its address. This
is done with the lease statement.

Note

The lease statement is also used in the dhclient.leases (5) file in order to
record leases that have been received from DHCP servers. Some of the syntax for
leases as described below is only needed in the dhclient.leases (5) file. Such
syntax is documented here for completeness.

A lease statement consists of the lease keyword, followed by a left curly brace ({),
followed by one or more lease declaration statements, followed by a right curly brace
(1) The following lease declarations are possible:

bootp;

The bootp statement is used to indicate that the lease was acquired using
the BOOTP protocol rather than the DHCP protocol. It is never to specify
this in the client configuration file. The client uses this syntax in its lease
database file.

2.3. dhclient.conf --- DHCP client configuration 105

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

interface <string>;

The interface lease statement is used to indicate the interface on which the
lease is valid. If set, this lease will only be tried on a particular interface.
When the client receives a lease from a server, it always records the inter-
face number on which it received that lease. If predefined leases are speci-
tied in the dhclient.conf file, the interface should also be specified, although
this is not required.

fixed-address <ip-address>*;

The fixed-address statement is used to set the IP address of a particular
lease. This is required for all lease statements. The IP address must be
specified as a dotted quad (e.g., 12.34.56.78).

filename <string>;

The filename statement specifies the name of the boot filename to use. This
is not used by the standard client configuration script, but is included for
completeness.

server-name <string>;

The server-name statement specifies the name of the boot server name to
use. This is also not used by the standard client configuration script.

option <option-declaration>;

The option statement is used to specify the value of an option supplied
by the server, or, in the case of predefined leases declared in dhclient.
conf, the value that the user wishes the client configuration script to use if
the predefined lease is used.

script <script-name>;

The script statement is used to specify the pathname of the DHCP client
configuration script (dhclient-script (8)). This script is used by the
DHCP client to set each interface's initial configuration prior to request-
ing an address, to test the address once it has been offered, and to set the
interface's final configuration once a lease has been acquired. If no lease
is acquired, the script is used to test predefined leases, if any, and also
called once if no valid lease can be identified. For more information, see
dhclient-script (8).

vendor option space <string>;

The vendor option space* statement is used to specify the name of the option
space which should be used for decoding the vendor-encapsulate-options
option if one is received. The dhcp-vendor-identifier can be used to request
a class of vendor options from the DHCP server. See dhcp-options (5)
for details.

medium <media setup string>;

106 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The medium statement can be used on systems where network in-
terfaces cannot automatically determine the type of network to which
they are connected. The <media setup string> argument is a system-
dependent parameter which is passed to the DHCP client configuration
script (dhclient-script (8)) when initializing the interface. The argu-
ment is passed on the i fconfig (8) program's command line when con-
figuring the interface.

The DHCP client automatically declares this parameter if it uses a media
type (see the media statement) when configuring the interface in order ob-
tain a lease. This statement should be used in predefined leases if the net-
work interface requires media type configuration.

renew <date>;
rebind <date>;
expire <date>;

The renew statement defines the time at which the DHCP client should
begin trying to contact its server to renew a lease that it is using.

The rebind statement defines the time at which the DHCP client should
begin to try to contact any DHCP server in order to renew its lease.

The expire statement defines the time at which the DHCP client must stop
using a lease if it has not been able to contact a server in order to renew it.

These declarations are automatically set in leases acquired by the DHCP
client, but must also be configured in predefined leases --- a predefined
lease whose expiry time has passed will not be used by the DHCP client.

Dates are specified in one of two ways. The software will output times
in these two formats depending on if the db-t ime-format configuration
parameter has been set to default or local. Ifitis set to default, then
date values appear as follows:

<weekday> <year>/<month>/<day> <hour>:<minute>:<second>

The weekday is present to make it easy for a human to tell when a lease
expires --- it is specified as a number from 0 to 6, with 0 being Sunday. The
day of week is ignored on input. The year is specified with the century, so
it should generally be four digits except for really long leases. The month
is specified as a number starting with 1 for January. The day of the month
is likewise specified starting with 1. The hour is a number between 0 and
23, the minute a number between 0 and 59, and the second also a number
between 0 and 59.

If the db-time-format was configured to local, then the date fields
appear as follows:

2.3. dhclient.conf --- DHCP client configuration 107

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

epoch <seconds-since-epoch>; # <day-name> <month-name> <day-
number> <hours>:<minutes>:<seconds> <year>

The <seconds-since-epoch> value is as according to the system's local clock
(often referred to as "unix time"). The # symbol starts a comment that
describes what actual time this is as according to the system's configured
timezone, at the time the value was written. It is provided only for human
inspection. The epoch time is the only recommended value for machine
inspection.

If a lease will never expire, then the date is the literal never instead of an
actual date.

Note

When defining a static lease, one may use either time format one wishes,
and need not include the comment or values after it.

2.3.8 Alias declarations
alias { <declaration> ... }

Some DHCP clients running TCP/IP roaming protocols may require that in addition
to the lease they may acquire via DHCP, their interface also be configured with a pre-
defined IP address alias so that they can have a permanent IP address even while
roaming. dhclient (8) doesn't support roaming with fixed addresses directly, but
in order to facilitate such experimentation, it can be set up to configure an IP address
alias using the alias declaration.

The alias declaration resembles a lease declaration, except that options other than
the subnet-mask option are ignored by the standard client configuration script
(dhclient-script (8)), and expiry times are ignored. A typical alias declaration
includes an interface declaration, a fixed-address declaration for the IP address alias,
and a subnet-mask option declaration. A medium statement should never be included
in an alias declaration.

2.3.9 Other declarations
db-time-format (default | local);

The db-time-format option determines which of two output methods are
used for printing times in leases files. The default format provides day-
and-time in UTC, whereas 1ocal uses a seconds-since-epoch to store the
time value, and helpfully places a local timezone time in a comment on
the same line. The formats are described in detail in the section on Lease
declarations.

lease-id-format (octal | hex);

This parameter governs the format used to write certain values to lease
tiles. With the default format octal, values are written as quoted strings in

108 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

which non-printable characters are represented as octal escapes --- a back-
slash character followed by three octal digits. When the hex format is spec-
ified, values are written as an unquoted series of hexadecimal digit pairs,
separated by colons.

Currently, the values written out based on lease-id-format are the
default-duid and the IAID value (DHCPv6 only). The client automati-
cally reads the values in either format.

Note

When the format is octal, rather than as an octal string, IAID is output
as hex if it contains no printable characters or as a string if contains only
printable characters. This is done to maintain backward compatibility.

reject <cidr-ip-address> [, ... <cidr-ip-address> |;

The reject statement causes the DHCP client to reject offers from DHCP
servers whose server identifier matches any of the specified hosts or sub-
nets. This can be used to avoid being configured by rogue or misconfigured
DHCP servers, although it should be a last resort --- better to track down
the bad DHCP server and fix it.

The cidr-ip-address configuration type is of the form <ip-
address>*[/*<prefixlen>], where <ip-address> is a dotted quad IP address,
and the optional <prefixlen> is the CIDR prefix length of the subnet,
counting the number of significant bits in the netmask starting from the
leftmost end.

The following is an example:

reject 192.168.0.0/16, 10.0.0.5;

The above example would cause offers from any server identifier in the entire RFC
1918 "Class C" network 192.168.0.0/16, or the specific single address 10.0.0.5, to be
rejected.

interface <name> { <declaration> ... }

A client with more than one network interface may require different be-
haviour depending on which interface is being configured. All timing pa-
rameters and declarations other than lease and alias can be enclosed in an
interface declaration, and those parameters will then be used only for the
interface that matches the specified <name>. Interfaces for which there is
no interface declaration will use the parameters declared outside of any
interface declaration, or the default settings.

Note

dhclient (8) only maintains one list of interfaces, which is either de-

2.3. dhclient.conf --- DHCP client configuration 109

http://www.ietf.org/rfc/rfc1918.txt
http://www.ietf.org/rfc/rfc1918.txt

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

termined at startup from command line arguments, or otherwise is au-
todetected. If you supplied the list of interfaces on the command line,
this configuration clause will add the named interface to the list in such
a way that will cause it to be configured by DHCP. It may not be the
result you had intended. This is an undesirable side effect that will be
addressed in a future release.

pseudo <name> <real-name> { <declaration> ... }

Under some circumstances it can be useful to declare a pseudo-interface
and have the DHCP client acquire a configuration for that interface. Each
interface that the DHCP client is supporting normally has a DHCP client
state machine running on it to acquire and maintain its lease. A pseudo-
interface is just another state machine running on the interface named <real-
name>, with its own lease and its own state. If you use this feature, you
must provide a client identifier for both the pseudo-interface and the actual
interface, and the two identifiers must be different. You must also provide
a separate client script (dhclient-script (8)) for the pseudo-interface
to do what you want with the IP address.

For example:

interface "epO0" {

send dhcp-client-identifier "my-client-epQO";
}
pseudo "secondary" "epO" {

send dhcp-client-identifier "my-client-epO-
—secondary";

script "/etc/lease/dhclient-secondary";

}

The client script for the pseudo-interface should not configure the interface
up or down --- essentially, all it needs to handle are the states where a lease
has been acquired or renewed, and the states where a lease has expired.
See dhclient-script (8) for more information.

media <media setup string> [, <media setup string>, ... |;

The media statement defines one or more media configuration parameters
which may be tried while attempting to acquire an IP address. The DHCP
client will cycle through each <media setup string> on the list, configuring
the interface using that setup and attempting to boot, and then trying the
next one. This can be used for network interfaces which aren't capable
of sensing the media type unaided --- whichever media type succeeds in
getting a request to the server and hearing the reply is probably right (no
guarantees).

The media setup is only used for the initial phase of address acquisition
(the DHCPDISCOVER and DHCPOFFER packets). Once an address has
been acquired, the DHCP client will record it in its lease database and will

110 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

record the media type used to acquire the address. Whenever the client
tries to renew the lease, it will use that same media type. The lease must
expire before the client will go back to cycling through media types.

hardware <link-type> <mac-address>;

The hardware statement defines the hardware MAC address to use for this
interface, for DHCP servers or relays to direct their replies. dhclient (8)
will determine the interface's MAC address automatically, so use of this
parameter is not recommended. The <link-type> corresponds to the inter-
face's link layer type (e.g., ethernet), and the <mac-address> is a string of
colon-separated hexadecimal values for octets.

anycast-mac <link-type> <mac-address>;

The anycast-mac statement overrides the all-ones broadcast MAC address
dhclient (8) will use when it is transmitting packets to the all-ones lim-
ited broadcast IPv4 address. This configuration parameter is useful to re-
duce the number of broadcast packets transmitted by DHCP clients, but is
only useful if you know the DHCP service(s) anycast MAC address prior
to configuring your client. The <link-type> and <mac-address> parameters
are configured in a similar manner to the hardware statement.

2.3.10 Example

The following configuration file is an example for use on an imaginary laptop. The lap-
top has an IP address alias of 192.5.5.213, and has one interface ep0 (a 3com 3C589C).
Booting intervals have been shortened somewhat from the default, because the client
is expected to spend most of its time on networks with little DHCP activity. The laptop
is expected to roam to multiple networks.

timeout 60;

retry 60;

reboot 10;
select—-timeout 5;
initial-interval 2;
reject 192.33.137.209;

interface "epO" {
send host—-name "laptop.example.com";
hardware ethernet 00:a0:24:ab:fb:9c;
send dhcp-client-identifier 1:0:a0:24:ab:fb:9c;
send dhcp-lease-time 3600;
supersede domain-search
"example.com", "work.example.org", "home.example.org";
prepend domain-name-servers 127.0.0.1;
request subnet-mask, broadcast-address, time-offset,
—routers,
domain-name, domain-name-servers, host-name;

require subnet-mask, domain—-name-servers;
(continues on next page)

2.3. dhclient.conf --- DHCP client configuration 111

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

script "/usr/bin/dhclient-script";
media "media 10baseT/UTP", "media 10base2/BNC";
}

alias {
interface "epQO";
fixed—-address 192.5.5.213;
option subnet-mask 255.255.255.255;

}

This is a very complicated dhclient.conf file --- in general, yours should be much
simpler. In many cases, it's sufficient to just create an empty dhclient.conf file -
the defaults are usually fine.

2.3.11 Files
/etc/lease/dhclient.conf

The configuration file for the dhclient (8) program.

2.3.12 See also

dhclient (8), dhcp-options(5), dhcp-eval (5), dhclient.leases(5),
dhcpd (8), dhcpd.conf (5)

2.3.13 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2004-2016 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

2.4 dhclient.leases --- DHCP client lease database

2.4.1 Description

dhclient (8) keeps a persistent database of leases that it has acquired that are still
valid. This database is a free-form ASCII file containing one valid declaration per
lease. The file is written as a log, so it is not unusual to find multiple declarations for
the same lease. If more than one declaration appears for a given lease, the last one in
the file is used.

The format of the lease declarations is described in dhclient.conf (5).

112 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.4.2 Files

/var/lib/lease/dhclient.leases

The client leases file.

2.4.3 See also

dhclient (8), dhcp-options (5), dhcp-eval (5), dhclient.conf (5),
dhcpd (8), dhcpd.conf (5)

2.4.4 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2009-2011 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2004 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1997-2003 by Internet Software Consortium.

2.5 dhcp-eval --- DHCP conditional evaluation

2.5.1 Description

dhcpd (8) and dhclient (8) both provide the ability to perform conditional behav-
ior depending on the contents of packets they receive. The syntax for specifying this
conditional behaviour is documented here.

2.5.2 Conditional behavior

Conditional behaviour may be specified using the if and switch statements. A con-
ditional statement can appear anywhere that a regular statement (e.g., an option
statement) can appear, and can enclose one or more such statements.

2.5.2.1 The if statement

A typical conditional if statement in a server might be:

if option dhcp-user-class = "accounting" {
max—lease—-time 17600;
option domain-name "accounting.example.org";
option domain-name-servers nsl.accounting.example.org,
ns2.accounting.example.org;
} elsif option dhcp-user-class = "sales" {
max—lease—-time 17600;
option domain-name "sales.example.org";
option domain-name-servers nsl.sales.example.org,
ns2.sales.example.org;
} elsif option dhcp-user-class = "engineering" ({
(continues on next page)

2.5. dhcp-eval --- DHCP conditional evaluation 113

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

max—lease-time 17600;

option domain-name "engineering.example.org";

option domain-name-servers nsl.engineering.example.org,
ns2.engineering.example.org;

} else {

max—lease-time 600;

option domain-name "misc.example.org";

option domain-name-servers nsl.misc.example.org,
ns2.misc.example.org;

On the client side, an example of conditional evaluation might be:

example.org filters DNS at its firewall, so we have to use
—~their DNS
servers when we connect to their network. If we are not at
example.org, prefer our own DNS server.
if not option domain-name = "example.org" {

prepend domain-name-servers 127.0.0.1;

The if statement and the elsif continuation statement both take boolean expressions
as their arguments. That is, they take expressions that, when evaluated, produce
a boolean result. If the expression evaluates to true, then the statements enclosed
in braces following the if statement are executed, and all subsequent elsif and else
clauses are skipped. Otherwise, each subsequent elsif clause's expression is checked,
until an elsif clause is encountered whose test evaluates to true. If such a clause is
found, the statements in braces following it are executed, and then any subsequent el-
sif and else clauses are skipped. If all the if and elsif clauses are checked but none of
their expressions evaluate true, then if there is an else clause, the statements enclosed
in braces following the else are evaluated. Boolean expressions that evaluate to null
are treated as false in conditionals.

2.5.2.2 The switch statement

The previous example can be rewritten using a switch construct:

switch (option dhcp-user-class) {

case "accounting":
max—lease-time 17600;
option domain-name "accounting.example.org";
option domain-name-servers nsl.accounting.example.org,

ns2.accounting.example.org;

case "sales":
max—lease-time 17600;
option domain-name "sales.example.org";
option domain-name-servers nsl.sales.example.org,

(continues on next page)

114 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

ns2.sales.example.org;
break;
case "engineering":
max—lease-time 17600;
option domain-name "engineering.example.org";
option domain-name-servers nsl.engineering.example.org,
ns2.engineering.example.org;
break;
default:
max—lease-time 600;
option domain-name "misc.example.org";
option domain-name-servers nsl.misc.example.org,
ns2.misc.example.org;
break;

The switch statement and the case statements can both be data expressions or nu-
meric expressions. Within a switch statement they all must be the same type. The
server evaluates the expression from the switch statement and then it evaluates the
expressions from the case statements until it finds a match.

If it finds a match it starts executing statements from that case until the next break
statement. If it doesn't find a match it starts executing statements from the default
statement and continues till the next break statement. If there is no match and there is
no default statement, it does nothing.

2.5.3 Boolean expressions

The following is the current list of boolean expressions that are supported by the
DHCP distribution.

<data-expression-1> = <data-expression-2>

The = operator compares the values of two data expressions, returning true
if they are the same, false if they are not. If either the left-hand side or the
right-hand side are null, the result is also null.

<data-expression-1> ~= <data-expression-2>
<data-expression-1> ~~ <data-expression-2>

The ~=and ~~ operators perform extended regex (7) matching of the val-
ues of two data expressions, returning true if <data-expression-1> matches
against the regular expression evaluated by <data-expression-2>, or false if
it does not match or encounters some error. If either the left-hand side or
the right-hand side are null or empty strings, the result is also false. The ~=
operator is case-sensitive, whereas the ~= operator is case-insensitive.

<boolean-expression-1> and <boolean-expression-2>

2.5. dhcp-eval --- DHCP conditional evaluation 115

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The and operator evaluates to true if the boolean expression on the left-
hand side and the boolean expression on the right-hand side both evaluate
to true. Otherwise, it evaluates to false. If either the expression on the left-
hand side or the expression on the right-hand side are null, the result is
null.

<boolean-expression-1> or <boolean-expression-2>

The or operator evaluates to true if either the boolean expression on the
left-hand side or the boolean expression on the right-hand side evaluate to
true. Otherwise, it evaluates to false. If either the on the left-hand side or
the expression on the right-hand side are null, the result is null.

not <boolean-expression>

The not operator evaluates to true if <boolean-expression> evaluates to false,
and returns false if <boolean-expression> evaluates to true. If <boolean-
expression> evaluates to null, the result is also null.

exists <option-name>

The exists expression returns true if the specified option exists in the in-
coming DHCP packet being processed.

known

The known expression returns true if the client whose request is currently
being processed is known, i.e., if there's a host declaration for it.

static

The static expression returns true if the lease assigned to the client whose
request is currently being processed is derived from a static address assign-
ment.

2.5.4 Data expressions

Several of the boolean expressions above depend on the results of evaluating data
expressions. A list of these expressions is provided here.

substring (<data-expression>, <offset>, <length>)

The substring operator evaluates <data-expression> and returns the sub-
string of the result of that evaluation that starts <offset> bytes from the
beginning, continuing for <length> bytes. <offset> and <length> are both
numeric expressions. If <data-expression>, <offset>, or <length> evaluate to
null, then the result is also null. If offset is greater than or equal to the
length of the evaluated data, then a zero-length data string is returned.
If length is greater then the remaining length of the evaluated data after
offset, then a data string containing all data from offset to the end of the
evaluated data is returned.

suffix (<data-expression>, <length>)

116 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The suffix operator evaluates <data-expression> and returns the last
<length> bytes of the result of that evaluation. <length> is a numeric ex-
pression. If <data-expression> or <length> evaluate to null, then the result
is also null. If suffix evaluates to a number greater than the length of the
evaluated data, then the evaluated data is returned.

Icase (<data-expression>)

The Icase function returns the result of evaluating <data-expression> con-
verted to lower case. If <data-expression> evaluates to null, then the result
is also null.

ucase (<data-expression>)

The ucase function returns the result of evaluating <data-expression> con-
verted to upper case. If <data-expression> evaluates to null, then the result
is also null.

option <option-name>

The option operator returns the contents of the specified option in the
packet to which the server is responding.

config-option <option-name>

The config-option operator returns the value for the specified option that
the DHCP client or server has been configured to send.

gethostname()

The gethostname() function returns a data string whose contents are a char-
acter string, the results of calling gethostname() on the local system with a
size limit of 255 bytes (not including NULL terminator). This can be used
for example to configure dhclient (8) to send the local hostname without
knowing the local hostname at the time dhclient.conf (5) is written.

hardware

The hardware operator returns a data string whose first element is the type
of network interface indicated in packet being considered, and whose sub-
sequent elements are client's link-layer address. If there is no packet, or if
the RFC 2131 hlen field is invalid, then the result is null. Hardware types in-
clude Ethernet (1), token-ring (6), and FDDI (8). Hardware types are spec-
ified by the IETF, and details on how the type numbers are defined can be
found in RFC 2131.

packet (<offset>, <length>)

The packet operator returns the specified portion of the packet being con-
sidered, or null in contexts where no packet is being considered. <offset>
and <length> are applied to the contents packet as in the substring opera-
tor.

"<string>"

2.5. dhcp-eval --- DHCP conditional evaluation

117

https://datatracker.ietf.org/doc/html/rfc2131.html
https://datatracker.ietf.org/doc/html/rfc2131.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

A string, enclosed in quotes, may be specified as a data expression, and
returns the text between the quotes, encoded in ASCII. The backslash (\
) character is treated specially, as in C programming: \t means TAB, \r
means carriage return, \n means newline, and \b means bell. Any oc-
tal value can be specified with \nnn, where <nnn> is any positive octal
number less than 0400. Any hexadecimal value can be specified with 'xnn’,
where <nn> is any positive hexadecimal number less than or equal to Oxff.

<colon-separated-hexadecimal-list>

A list of hexadecimal octet values, separated by colons, may be specified as
a data expression.

concat (<data-expression-1>, ..., <data-expression-N>)

The expressions are evaluated, and the results of each evaluation are con-
catenated in the sequence that the subexpressions are listed. If any subex-
pression evaluates to null, the result of the concatenation is null.

reverse (<numeric-expression>, <data-expression>)

The two expressions are evaluated, and then the result of evaluating the
<data-expression> is reversed in place, using hunks of the size specified in
the <numeric-expression>. For example, if <numeric-expression> evaluates
to 4, and <data-expression> evaluates to 12 bytes of data, then the reverse
expression will evaluate to 12 bytes of data, consisting of the last 4 bytes
of the input data, followed by the middle 4 bytes, followed by the first 4
bytes.

leased-address

In any context where the client whose request is being processed has been
assigned an IP address, this data expression returns that IP address. In
any context where the client whose request is being processed has not been
assigned an IP address, if this data expression is found in executable state-
ments executed on that client's behalf, a log message indicating "there is
no lease associated with this client" is syslogged at the debug level (this is
considered dhcpd. conf (5) debugging information).

binary-to-ascii (<numeric-expression-1>, <numeric-expression-2>, <data-expression-1>,
<data-expression-2>)

Converts the result of evaluating <data-expression-2> into a text string con-
taining one number for each element of the result of evaluating <data-
expression-2>. Each number is separated from the other by the result of eval-
uating <data-expression-1>. The result of evaluating <numeric-expression-1>
specifies the base (2 through 16) into which the numbers should be con-
verted. The result of evaluating <numeric-expression-2> specifies the width
in bits of each number, which may be either 8, 16, or 32.

As an example of the preceding three types of expressions, to produce the
name of a PTR record for the IP address being assigned to a client, one
could write the following expression:

118 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

concat (binary-to-ascii (10, 8, ".",
reverse (1, leased—-address)),
".in-addr.arpa.");

encode-int (<numeric-expression>, <width>)

<numeric-expression> is evaluated and encoded as a data string of
the specified width, in network byte order (most significant byte first).
If the expression evaluates to the null value, the result is also null.

pick-first-value (<data-expression-1> [, ... <data-expression-N>])

The pick-first-value function takes any number of data expressions as its
arguments. Each expression is evaluated, starting with the first in the list,
until an expression is found that does not evaluate to a null value. That ex-
pression is returned, and none of the subsequent expressions are evaluated.
If all expressions evaluate to a null value, the null value is returned.

host-decl-name

The host-decl-name function returns the name of the host declaration that
matched the client whose request is currently being processed, if any. If no
host declaration matched, the result is the null value.

2.5.5 Numeric expressions

Numeric expressions are expressions that evaluate to an integer. In general, the maxi-
mum size of such an integer should not be assumed to be representable in fewer than
32 bits, but the precision of such integers may be more than 32 bits.

In addition to the following operators several standard math functions are available.
They are:

Operation Symbol

Add +
Subtract -
Multiply *
Divide /
Modulus %
Bitwise AND &
Bitwise OR |
Bitwise XOR ~»

extract-int (<data-expression>, <width>)

The extract-int operator extracts an integer value in network byte order
from the result of evaluating the specified <data-expression>. <width> is
the width in bits of the integer to extract. Currently, the only supported
widths are 8, 16 and 32. If the evaluation of <data-expression> doesn't pro-

2.5. dhcp-eval --- DHCP conditional evaluation 119

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

vide sufficient bits to extract an integer of the specified size, the null value
is returned.

lease-time

The duration of the current lease, i.e., the difference between the current
time and the time that the lease expires.

<number>

Any number between zero and the maximum representable size may be
specified as a numeric expression.

client-state

The current state of the client instance being processed. This is only useful
in DHCP client configuration files. Possible values are:

* Booting --- DHCP client is in the INIT state, and does not yet have an
IP address. The next message transmitted will be a DHCPDISCOVER,
which will be broadcast.

e Reboot --- DHCP client is in the INIT-REBOOT state. It has an IP ad-
dress, but is not yet using it. The next message to be transmitted will
be a DHCPREQUEST, which will be broadcast. If no response is heard,
the client will bind to its address and move to the BOUND state.

e Select --- DHCP client is in the SELECTING state --- it has received at
least one DHCPOFFER message, but is waiting to see if it may receive
other DHCPOFFER messages from other servers. No messages are
sent in the SELECTING state.

* Request --- DHCP client is in the REQUESTING state --- it has received
at least one DHCPOFFER message, and has chosen which one it will
request. The next message to be sent will be a DHCPREQUEST mes-
sage, which will be broadcast.

* Bound --- DHCP client is in the BOUND state --- it has an IP address.
No messages are transmitted in this state.

* Renew --- DHCP client is in the RENEWING state --- it has an IP ad-
dress, and is trying to contact the server to renew it. The next message
to be sent will be a DHCPREQUEST message, which will be unicast
directly to the server.

* Rebind --- DHCP client is in the REBINDING state --- it has an IP ad-
dress, and is trying to contact any server to renew it. The next message
to be sent will be a DHCPREQUEST, which will be broadcast.

2.5.6 Action expression
log (<priority>, <data-expression>)

Logging statements may be used to send information to the standard log-
ging channels. A logging statement includes an optional <priority> (fatal,

120 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

error, info, or debug), and a <data-expression>.

Logging statements take only a single <data-expression> argument, so if you
want to output multiple data values, you will need to use the concat oper-
ator to concatenate them.

execute (<command-path> [, <data-expression-1>, ..., *<data-expression-N>]);

The execute statement runs an external command. The first argument
<command-path> is a string literal containing the name or path of the com-
mand to run. The other arguments, if present, are either string literals or
data expressions which evaluate to text strings, to be passed as command-
line arguments to the command.

execute is synchronous; the process will block until the external command
being run has finished.

Warning

Lengthy program execution (for example, in an "on commit" in dhcpd.
conf (5)) may result in bad performance and timeouts. Only external
applications with very short execution times are suitable for use.

Passing user-supplied data to an external application might be dangerous.
Make sure the external application checks input buffers for validity. Non-
printable ASCII characters will be converted into dhcpd. conf (5) lan-
guage octal escapes (" \nnn"), make sure your external command handles
them as such.

It is possible to use the execute statement in any context, not only on events.
If it is used in a regular scope in the configuration file, that command will
be executed every time a scope is evaluated.

parse-vendor-option;

The parse-vendor-option statement attempts to parse a vendor option
(code 43). It is only useful while processing a packet on the server and
requires that the administrator has already used the vendor-option-space
statement to select a valid vendor space.

This functionality may be used if the server needs to take different actions
depending on the values the client placed in the vendor option and the
sub-options are not at fixed locations. It is handled as an action to allow
an administrator to examine the incoming options and choose the correct
vendor space.

2.5. dhcp-eval --- DHCP conditional evaluation 121

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.5.7 Dynamic DNS updates

See dhcpd. conf (5) and dhclient.conf (5) for more information about dynamic
DNS updates.

2.5.8 See also

dhcpd.conf (5), dhcpd. leases (5), dhclient.conf (5), dhcp-options (5),
dhcpd (8),dhclient (8)

2.5.9 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2009-2012,2014-2015 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2004,2007 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

2.6 dhcp-options --- DHCP options

2.6.1 Description

The Dynamic Host Configuration Protocol allows the client to receive options from
the DHCP server describing the network configuration and various services that are
available on the network. When configuring dhcpd (8) or dhclient (8), options
must often be declared. The syntax for declaring options, and the names and formats
of the options that can be declared, are documented here.

2.6.2 Option statements
option <option-name> <option-data>

DHCP option statements start with the option keyword, followed by an option name,
followed by option data. The option names and data formats are described below. It
is not necessary to exhaustively specify all DHCP options --- only those options which
are needed by clients must be specified.

<option-data> may be specified in a variety of formats, as defined below:

The ip-address data type can be entered either as an explicit IP address (e.g.,
239.254.197.10) or as a domain name (e.g., foo.example.com). If entering a domain
name, the domain name must resolve to a single IP address.

The ip6-address data specifies an IPv6 address, like ::1 or 3ffe:bbbb:aaaa:aaaa::1.

The int32 data type specifies a signed 32-bit integer. The uint32 data type specifies an
unsigned 32-bit integer. The int16 and uint16 data types specify signed and unsigned
16-bit integers. The int8 and uint8 data types specify signed and unsigned 8-bit inte-
gers. Unsigned 8-bit integers are also sometimes referred to as octets.

122 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The text data type specifies an NVT-ASCII string, which must be enclosed in double
quotes; for example, to specify a root-path option, the syntax would be:

option root-path "10.0.1.4:/var/tmp/rootfs";

The domain-name data type specifies a domain name, which must not be enclosed in
double quotes. The domain name is stored just as if it were a text option.

The domain-list data type specifies a list of domain names, enclosed in double quotes
and separated by commas (e.g., "example.com", "foo.example.com").

The flag data type specifies a boolean value. Booleans can be either t rue or false,
or on (true) or of f (false).

The string data type specifies either an NVT-ASCII string enclosed in double quotes,
or a series of octets specified in hexadecimal, separated by colons. For example:

option dhcp-client-identifier "CLIENT-FOO";
option dhcp-client-identifier 43:4c:49:45:54:2d:46:4f:4f;

2.6.3 Setting option values using expressions

Sometimes it's helpful to be able to set the value of a DHCP option based on some
value that the client has sent. To do this, you can use expression evaluation. The
dhcp-eval (5) manual page describes how to write expressions. To assign the result
of an evaluation to an option, define the option as follows:

option <option-name> = <expression>;

For example:

option hostname = binary-to-ascii (16, 8, "-",
substring (hardware, 1,

—

—6));

2.6.4 Standard DHCPv4 options

The documentation for the various options mentioned below is taken from the latest
IETF draft document on DHCP options. Options not listed below may not yet be im-
plemented, but it is possible to use such options by defining them in the configuration
tile. Please see the section titled Defining new options for more information.

Some of the options documented here are automatically generated by the DHCP
server or by clients, and cannot be configured by the user. The value of such an op-
tion can be used in the configuration file of the receiving DHCP protocol agent (server
or client), for example, in conditional expressions. However, the value of the option
cannot be used in the configuration file of the sending agent, because the value is
determined only after the configuration file has been processed. In the following doc-
umentation, such options will be described as "not user configurable"

The standard options are:

2.6. dhcp-options --- DHCP options 123

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option all-subnets-local <flag>;

This option specifies whether or not the client may assume that all subnets
of the IP network to which the client is connected use the same MTU as the
subnet of that network to which the client is directly connected. A value of
true indicates that all subnets share the same MTU. A value of false means
that the client should assume that some subnets of the directly connected
network may have smaller MTUs.

option arp-cache-timeout <uint32>;
This option specifies the timeout in seconds for ARP cache entries.
option associated-ip <ip-address> [, <ip-address> ... |;

This option is part of lease query. It is used to return all of the IP addresses
associated with a given DHCP client.

Note

This option is not user configurable.

option bems-controller-address <ip-address> [, <ip-address> ... |;

This option configures a list of IPv4 addresses for use as Broadcast and
Multicast Controller Servers ("BCMS").

option becms-controller-names <domain-list>;

This option contains the domain names of local Broadcast and Multicast
Controller Servers ("BCMS") controllers which the client may use.

option bootfile-name <text>;

This option is used to identify a bootstrap file. If supported by the client,
it should have the same effect as the filename declaration. BOOTP clients
are unlikely to support this option. Some DHCP clients will support it, and
others actually require it.

option boot-size <uint16>;

This option specifies the length in 512-octet blocks of the default boot image
for the client.

option broadcast-address <ip-address>;

This option specifies the broadcast address in use on the client's subnet.
Legal values for broadcast addresses are specified in section 3.2.1.3 of STD
3 (RFC 1122).

option capwap-ac-v4 <ip-address> [, <ip-address> ... |;

A list of IPv4 addresses of CAPWAP ACs that the WIP may use. The ad-
dresses are listed in preference order. This option is included based on RFC
5417.

124 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1122.html
https://datatracker.ietf.org/doc/html/rfc5417.html
https://datatracker.ietf.org/doc/html/rfc5417.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option client-last-transaction-time <uint32>;

This option is part of lease query. It allows the receiver to determine the
time of the most recent access by the client. The value is a duration in
seconds from when the client last communicated with the DHCP server.

Note

This option is not user configurable.

option cookie-servers <ip-address> [, <ip-address> ...];

The cookie server option specifies a list of RFC 865 cookie servers available
to the client. Servers should be listed in order of preference.

option default-ip-ttl <uint8>;

This option specifies the default time-to-live that the client should use on
outgoing datagrams.

option default-tcp-ttl <uint8>;

This option specifies the default TTL that the client should use when send-
ing TCP segments. The minimum value is 1.

option default-url <string>;

The format and meaning of this option is not described in any standards
document, but is claimed to be in use by Apple Computer.

Warning

It is not known clients may reasonably do if supplied with this option.
Use at your own risk.

option dhcp-client-identifier <string>;

This option can be used to specify a DHCP client identifier in a host decla-
ration, so that dhcpd (8) can find the host record by matching against the
client identifier.

Please be aware that some DHCP clients, when configured with client iden-
tifiers that are ASCII text, will prepend a zero to the ASCII text. So you may
need to write:

option dhcp-client-identifier "\Ofoo";

rather than:

option dhcp-client-identifier "foo";

option dhcp-lease-time <uint32>;

2.6. dhcp-options --- DHCP options

125

https://datatracker.ietf.org/doc/html/rfc865.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option is used in a client request (DHCPDISCOVER or DHCPRE-
QUEST) to allow the client to request a lease time for the IP address. In
a server reply (DHCPOFFER), a DHCP server uses this option to specify
the lease time it is willing to offer.

Note

This option is not directly user configurable in the server; refer to
the max-lease-time and default-lease-time server options in
dhcpd.conf (5).

option dhcp-max-message-size <uint16>;

This option, when sent by the client, specifies the maximum size of any
response that the server sends to the client. When specified on the server, if
the client did not send a dhcp-max-message-size option, the size specified
on the server is used. This works for BOOTP as well as DHCP responses.

option dhcp-message <text>;

This option is used by a DHCP server to provide an error message to a
DHCP client ina DHCPNAK message in the event of a failure. A client may
use this option in a DHCPDECLINE message to indicate why the client
declined the offered parameters.

Note

This option is not user configurable.

option dhcp-message-type <uint8>;

This option, sent by both client and server, specifies the type of DHCP mes-
sage contained in the DHCP packet. Possible values (taken directly from
RFC 2132) are:

DHCPDISCOVER
DHCPOFFER
DHCPREQUEST
DHCPDECLINE
DHCPACK
DHCPNAK
DHCPRELEASE
DHCPINFORM

NI ON Ul WIN -

Note

126 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc2132.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option is not user configurable.

option dhcp-option-overload <uint8>;

This option is used to indicate that the DHCP sname or file fields are
being overloaded by using them to carry DHCP options. A DHCP server
inserts this option if the returned parameters will exceed the usual space
allotted for options.

If this option is present, the client interprets the specified additional fields
after it concludes interpretation of the standard fields.

Legal values for this option are:

1 The file field is used to hold options
2 The sname field is used to hold options
3 Both fields are used to hold options

Note

This option is not user configurable.

option dhcp-parameter-request-list <uint8> [, <uint8> ... |;

This option, when sent by the client, specifies which options the client
wishes the server to return. Normally, in dhclient (8), this is done us-
ing the request statement. If this option is not specified by the client, the
DHCP server will normally return every option that is valid scope and that
fits into the reply. When this option is specified on the server, the server
returns the specified options. This can be used to force a client to take op-
tions that it hasn't requested, and it can also be used to tailor the response
of the DHCP server for clients that may need a more limited set of options
than those the server would normally return.

option dhcp-rebinding-time <uint32>;

This option specifies the number of seconds from the time a client gets an
address until the client transitions to the REBINDING state.

This option is user configurable, but it will be ignored if the value is greater
than or equal to the lease time.

To make DHCPv4+DHCPv6 migration easier in the future, any value con-
figured in this option is also used as a DHCPv6 "T1" (renew) time.

option dhcp-renewal-time <uint32>;

This option specifies the number of seconds from the time a client gets an
address until the client transitions to the RENEWING state.

2.6. dhcp-options --- DHCP options 127

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option is user configurable, but it will be ignored if the value is greater
than or equal to the rebinding time, or lease time.

To make DHCPv4+DHCPv6 migration easier in the future, any value con-
figured in this option is also used as a DHCPv6 "T2" (rebind) time.

option dhcp-requested-address <ip-address>;

This option is used by the client in a DHCPDISCOVER to request that a
particular IP address be assigned.

Note

This option is not user configurable.

option dhcp-server-identifier <ip-address>;

This option is used in DHCPOFFER and DHCPREQUEST messages, and
may optionally be included in the DHCPACK and DHCPNAK messages.
DHCP servers include this option in the DHCPOFFER in order to allow the
client to distinguish between lease offers. DHCP clients use the contents of
the server identifier field as the destination address for any DHCP messages
unicast to the DHCP server. DHCP clients also indicate which of several
lease offers is being accepted by including this option in a DHCPREQUEST
message.

The value of this option is the IP address of the server.

Note

This option is not directly user configurable. See the
server-identifier server option in dhcpd. conf (5).

option domain-name <text>;

This option specifies the domain name that client should use when host-
names via the DNS.

option domain-name-servers <ip-address> [, <ip-address> ...];

This option specifies a list of DNS (STD 13, RFC 1035) nameservers avail-
able to the client. Nameservers should be listed in order of preference.

option domain-search <domain-list>;

This option specifies a search list of domain names to be used by the client
to locate not-fully-qualified domain names. The difference between this
option and historic use of the domain-name option for the same is that
this option is encoded using RFC 1035 compressed labels on the wire. For
example:

128 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc1035.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option domain-search "example.com", "sales.example.com
", "eng.example.com";

option extensions-path <text>;

This option specifies the name of a file containing additional options to be
interpreted according to the DHCP option format as specified in RFC 2132.

option finger-server <ip-address> [, <ip-address> ... |;

This option specifies a list of Finger servers available to the client. Servers
should be listed in order of preference.

option font-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of X Window System Font servers available to
the client. Servers should be listed in order of preference.

option geoconf-civic <string>;

A string to hold the geoconf civic structure. This option is included based
on RFC 4776.

option host-name <string>;

This option specifies the name of the client. The name may or may not be
with the local domain name (it is preferable to use the domain-name option
to specify the domain name). See RFC 1035 for character set restrictions.
This option is only honored by dhclient-script (8) if the hostname
for the client machine is not set.

option ieee802-3-encapsulation <flag>;

This option specifies whether or not the client should use Ethernet Version
2 (RFC 894) or IEEE .3 (RFC 1042) encapsulation if the interface is of Eth-
ernet type. A value of false indicates that the client should use RFC 894
encapsulation. A value of true means that the client should use RFC 1042
encapsulation.

option ien116-name-servers <ip-address> [, <ip-address> ...];

This option specifies a list of IEN 116 name servers available to the client.
Servers should be listed in order of preference.

option impress-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of Imagen Impress servers available to the client.
Servers should be listed in order of preference.

option interface-mtu <uint16>;

This option specifies the MTU to use on this interface. The minimum legal
value for the MTU is 68.

option ip-forwarding <flag>;

2.6. dhcp-options --- DHCP options 129

https://datatracker.ietf.org/doc/html/rfc2132.html
https://datatracker.ietf.org/doc/html/rfc4776.html
https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc894.html
https://datatracker.ietf.org/doc/html/rfc1042.html
https://datatracker.ietf.org/doc/html/rfc894.html
https://datatracker.ietf.org/doc/html/rfc1042.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option specifies whether the client should configure its IP layer for
packet forwarding. A value of false means disable IP forwarding, and a
value of true means enable IP forwarding.

option irc-server <ip-address> [, <ip-address> ... |;

This option specifies a list of IRC servers available to the client. Servers
should be listed in order of preference.

option log-servers <ip-address> [, <ip-address> ...];

This option specifies a list of MIT-LCS UDP log servers available to the
client. Servers should be listed in order of preference.

option lpr-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of RFC 1179 line printer servers available to the
client. Servers should be listed in order of preference.

option mask-supplier <flag>;

This option specifies whether or not the client should respond to subnet
mask requests using ICMP. A value of false indicates that the client should
not respond. A value of true means that the client should respond.

option max-dgram-reassembly <uint16>;

This option specifies the maximum size datagram that the client should be
prepared to reassemble. The minimum legal value is 576.

option merit-dump <text>;

This option specifies the path-name of a file to which the client's core image
should be dumped in the event the client crashes. The path is formatted as
a character string consisting of characters from the NVT-ASCII character
set.

option mobile-ip-home-agent <ip-address> [, <ip-address> ... |;

This option specifies a list of IP addresses indicating mobile IP home agents
available to the client. Agents should be listed in order of preference, al-
though normally there will be only one such agent.

option name-service-search <uint16> [, <uint6> ... |;

This option specifies a list of name services in the order the client should
attempt to use them. This option is included based on RFC 2937.

option nds-context <string>;

This option specifies the name of the initial Netware Directory Service for
an NDS client.

option nds-servers <ip-address> [, <ip-address> ... |;
This option specifies a list of IP addresses of NDS servers.

option nds-tree-name <string>;

130 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1179.html
https://datatracker.ietf.org/doc/html/rfc2937.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option specifies the NDS tree name that the NDS client should use.
option netbios-dd-server <ip-address> [, <ip-address> ... |;

This option specifies a list of RFC 1001 and RFC 1002 NetBIOS datagram
distribution server (NBDD) servers listed in order of preference.

option netbios-name-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of RFC 1001 and RFC 1002 NetBIOS name
servers (NBNS) listed in order of preference. NetBIOS Name Service is cur-
rently more commonly referred to as WINS. WINS servers can be specified
using this option.

option netbios-node-type <uint§>;

This option allows NetBIOS over TCP/IP clients (which are configurable)
to be configured as described in RFC 1001 and RFC 1002. The NetBIOS
node type value is specified as a single octet which identifies the client

type.

Possible node types are:

B-node: Broadcast - no WINS

P-node: Peer - WINS only

M-node: Mixed - broadcast, then WINS
H-node: Hybrid - WINS, then broadcast

RO =N =

option netbios-scope <string>;

This option specifies the NetBIOS over TCP/IP scope for the client as spec-
ified in RFC 1001 and RFC 1002. See RFC 1001, RFC 1002, and RFC 1035
for character-set restrictions.

option netinfo-server-address <ip-address> [, <ip-address> ... |;

The format and meaning of this option is not described in any standards
document, but is claimed to be in use by Apple Computer.

Warning

It is not known clients may reasonably do if supplied with this option.
Use at your own risk.

option netinfo-server-tag <text>;

The format and meaning of this option is not described in any standards
document, but is claimed to be in use by Apple Computer.

Warning

2.6. dhcp-options --- DHCP options 131

https://datatracker.ietf.org/doc/html/rfc1001.html
https://datatracker.ietf.org/doc/html/rfc1002.html
https://datatracker.ietf.org/doc/html/rfc1001.html
https://datatracker.ietf.org/doc/html/rfc1002.html
https://datatracker.ietf.org/doc/html/rfc1001.html
https://datatracker.ietf.org/doc/html/rfc1002.html
https://datatracker.ietf.org/doc/html/rfc1001.html
https://datatracker.ietf.org/doc/html/rfc1002.html
https://datatracker.ietf.org/doc/html/rfc1001.html
https://datatracker.ietf.org/doc/html/rfc1002.html
https://datatracker.ietf.org/doc/html/rfc1035.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

It is not known clients may reasonably do if supplied with this option.
Use at your own risk.

option nis-domain <text>;

This option specifies the name of the client's NIS (Sun Network Information
Services) domain. The domain is formatted as a character string consisting
of characters from the NVT-ASCII character set.

option nis-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of IP addresses indicating NIS servers available
to the client. Servers should be listed in order of preference.

option nisplus-domain <text>;

This option specifies the name of the client's NIS+ domain. The domain
is formatted as a character string consisting of characters from the NVT-
ASCII character set.

option nisplus-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of IP addresses indicating NIS+ servers available
to the client. Servers should be listed in order of preference.

option nntp-server <ip-address> [, <ip-address> ... |;

The NNTP server option specifies a list of NNTP servers available to the
client. Servers should be listed in order of preference.

option non-local-source-routing <flag>;

This option specifies whether the client should configure its IP layer to al-
low forwarding of datagrams with non-local source routes. See Section
3.3.5 of STD 3 (RFC 1122) for a discussion of this topic. A value of false
means disallow forwarding of such datagrams, and a value of true means
allow forwarding.

option ntp-servers <ip-address> [, <ip-address> ... |;

This option specifies a list of IP addresses indicating NTP (RFC 5905)
servers available to the client. Servers should be listed in order of pref-
erence.

option nwip-domain <string>;
The name of the NetWare/IP domain that a NetWare/IP client should use.
option nwip-suboptions <string>;

A sequence of suboptions for NetWare/IP clients --- see RFC 2242 for de-
tails. Normally this is set by specifying specific NetWare/IP suboptions.
See the section titled NetWare/IP suboptions for more information.

option option-6rd <uint8> <uint8> <ip6-address> <ip-address> [, <ip-address> ... |;

132 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc1122.html
https://datatracker.ietf.org/doc/html/rfc5905.html
https://datatracker.ietf.org/doc/html/rfc2242.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option contains information about the rapid deployment option. It
is 8 bits of IPv4 mask length, 8 bits of 6rd prefix length, an IPv6 prefix as
an IPv6 address and a list of one or more IPv4 addresses. This option is
included based on RFC 5969.

option pana-agent <ip-address> [, <ip-address> ...];

A set of IPv4 addresses of a PAA for the client to use. The addresses are
listed in preferred order. This option is included based on RFC 5192.

option path-mtu-aging-timeout <uint32>;

This option specifies the timeout (in seconds) to use when aging Path MTU
values discovered by the mechanism defined in RFC 1191.

option path-mtu-plateau-table <uint16> [, <uintl6> ... |;

This option specifies a table of MTU sizes to use when performing Path
MTU Discovery as defined in RFC 1191. The table is formatted as a list of
16-bit unsigned integers, ordered from smallest to largest. The minimum
MTU value cannot be smaller than 68.

option pcode <text>;

This option specifies a string suitable for the TZ variable. This option is
included based on RFC 4833.

option perform-mask-discovery <flag>;

This option specifies whether or not the client should perform subnet mask
discovery using ICMP. A value of false indicates that the client should not
perform mask discovery. A value of true means that the client should per-
form mask discovery.

option policy-filter ip-address ip-address [, ip-address ip-address...];

This option specifies policy filters for non-local source routing. The filters
consist of a list of IP addresses and masks which specify destination/mask
pairs with which to filter incoming source routes.

Any source routed datagram whose next-hop address does not match one
of the filters should be discarded by the client.

See STD 3 (RFC 1122) for further information.
option pop-server <ip-address> [, <ip-address> ...];

This option specifies a list of POP3 servers available to the client. Servers
should be listed in order of preference.

option rdnss-selection <uint8> <ip-address> <ip-address> <domain-list>;

This option specifies an 8-bit flags field, a primary and secondary IP ad-
dress for the nameserver, and a <domain-list> of domains for which the
RDNSS has special knowledge. This option is included based on RFC 6731.

option resource-location-servers <ip-address> [, <ip-address> ...];

2.6. dhcp-options --- DHCP options

133

https://datatracker.ietf.org/doc/html/rfc5969.html
https://datatracker.ietf.org/doc/html/rfc5192.html
https://datatracker.ietf.org/doc/html/rfc1191.html
https://datatracker.ietf.org/doc/html/rfc1191.html
https://datatracker.ietf.org/doc/html/rfc4833.html
https://datatracker.ietf.org/doc/html/rfc1122.html
https://datatracker.ietf.org/doc/html/rfc6731.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option specifies a list of RFC 887 Resource Location servers available
to the client. Servers should be listed in order of preference.

option root-path <text>;

This option specifies the path-name that contains the client's root disk. The
path is formatted as a character string consisting of characters from the
NVT-ASCII character set.

option router-discovery <flag>;

This option specifies whether or not the client should solicit routers using
the Router Discovery mechanism defined in RFC 1256. A value of false that
the client should not perform router discovery. A value of true means that
the client should perform router discovery.

option router-solicitation-address <ip-address>;

This option specifies the address to which the client should transmit router
solicitation requests.

option routers <ip-address> [, <ip-address> ...];

The routers option specifies a list of IP addresses for routers on the client's
subnet. Routers should be listed in order of preference.

option slp-directory-agent <flag> <ip-address> [, <ip-address> ... |;

This option specifies two things: the IP addresses of one or more Service
Location Protocol Directory Agents, and whether the use of these addresses
is mandatory. If the initial flag value is true, the SLP agent should just use
the IP addresses given. If the value is false, the SLP agent may additionally
do active or passive multicast discovery of SLP agents (see RFC 2165 for
details).

Note

In this option and the slp-service-scope option, the term "SLP Agent"
is being used to refer to a Service Location Protocol agent running on a
machine that is being configured using the DHCP protocol.

Note

Please be aware that some companies may refer to SLP as NDS. If you
have an NDS directory agent whose address you need to configure, this
option should work.

option slp-service-scope <flag> <text>;

The Service Location Protocol Service Scope Option specifies two things: a
list of service scopes for SLP, and whether the use of this list is mandatory. If

134 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc887.html
https://datatracker.ietf.org/doc/html/rfc1256.html
https://datatracker.ietf.org/doc/html/rfc2165.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

the initial flag value is true, the SLP agent should only use the list of scopes
provided in this option; otherwise, it may use its own static configuration
in preference to the list provided in this option.

The text string should be a comma-separated list of scopes that the SLP
agent should use. It may be omitted, in which case the SLP Agent will use
the aggregated list of scopes of all directory agents known to the SLP agent.

option smtp-server <ip-address> [, <ip-address> ... |;

The SMTP server option specifies a list of SMTP servers available to the
client. Servers should be listed in order of preference.

option static-routes <ip-address> <ip-address> [, <ip-address> <ip-address> ... |;

This option specifies a list of static routes that the client should install in its
routing cache. If multiple routes to the same destination are specified, they
are listed in descending order of priority.

The routes consist of a list of IP address pairs. The first address is the des-
tination address, and the second address is the router for the destination.

The default route (0.0.0.0) is an illegal destination for a static route. To
specify the default route, use the routers option. Also, please note that this
option is not intended for classless IP routing --- it does not include a subnet
mask. Since classless IP routing is now the most widely deployed routing
standard, this option is virtually useless, and is not implemented by any of
the popular DHCP clients, for example the Microsoft DHCP client.

option streettalk-directory-assistance-server <ip-address> [, <ip-address> ... |;

This option specifies a list of StreetTalk Directory Assistance (STDA)
servers available to the client. Servers should be listed in order of pref-
erence.

option streettalk-server <ip-address> [, <ip-address> ... |;

This option specifies a list of StreetTalk servers available to the client.
Servers should be listed in order of preference.

option subnet-mask <ip-address>;

This option specifies the client's subnet mask as per RFC 950. If no subnet
mask option is provided anywhere in scope, as a last resort dhcpd (8) will
use the subnet mask from the subnet declaration for the network on which
an address is being assigned. However, any subnet-mask option declara-
tion that is in scope for the address being assigned will override the subnet
mask specified in the subnet declaration.

option subnet-selection <ip-address>;

Sent by the client if an address is required in a subnet other than the one
that would normally be selected (based on the relaying address of the con-
nected subnet the request is obtained from). See RFC 3011.

2.6. dhcp-options --- DHCP options

135

https://datatracker.ietf.org/doc/html/rfc950.html
https://datatracker.ietf.org/doc/html/rfc3011.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Note

The option number used by this server is 118; this has not always been
the defined number, and some clients may use a different value.

Warning

Use of this option should be regarded as slightly experimental.

Note

This option is not user configurable in the server.

option swap-server <ip-address>;
This specifies the IP address of the client's swap server.
option tcp-keepalive-garbage <flag>;

This option specifies whether or not the client should send TCP keepalive
messages with an octet of garbage for compatibility with older implemen-
tations. A value of false indicates that a garbage octet should not be sent.
A value of true indicates that a garbage octet should be sent.

option tcp-keepalive-interval <uint32>;

This option specifies the interval (in seconds) that the client TCP should
wait before sending a keepalive message on a TCP connection. The time is
specified as a 32-bit unsigned integer. A value of 0 indicates that the client
should not generate keepalive messages on connections unless specifically
requested by an application.

option tcode <text>;

This option specifies a name of a zone entry in the TZ database. This option
is included based on RFC 4833.

option tftp-server-name <text>;

This option is used to identify a TFTP server and, if supported by the client,
should have the same effect as the server-name declaration. BOOTP clients
are unlikely to support this option. Some DHCP clients will support it, and
others actually require it.

option time-offset <int32>;

This option specifies the offset of the client's subnet in seconds from Coor-
dinated Universal Time (UTC).

option time-servers <ip-address> [, <ip-address> ... |;

136 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc4833.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

This option specifies a list of RFC 868 time servers available to the client.
Servers should be listed in order of preference.

option trailer-encapsulation <flag>;

This option specifies whether or not the client should negotiate the use of
trailers (RFC 893) when using the ARP protocol. A value of false indicates
that the client should not attempt to use trailers. A value of true means that
the client should attempt to use trailers.

option uap-servers <text>;

This option specifies a list of URLs, each pointing to a user authentication
service that is capable of processing authentication requests encapsulated
in the User Authentication Protocol (UAP). UAP servers can accept either
HTTP/1.1 or SSLv3 connections. If the list includes a URL that does not
contain a port component, the normal default port is assumed (i.e., port 80
for HTTP and port 443 for HTTPS). If the list includes a URL that does not
contain a path component, the path /uap is assumed. If more than one
URL is specified in this list, the URLs are separated by spaces.

option user-class <string>;

This option is used by some DHCP clients as a way for users to specify
identifying information to the client. This can be used in a similar way to
the vendor-class-identifier option, but the value of the option is specified
by the user, not the vendor. Most recent DHCP clients have a way in the
user interface to specify the value for this identifier, usually as a text string.

option v4-access-domain <domain-name>;

The domain name associated with the access network for use with LIS Dis-
covery. This option is included based on RFC 5986.

option v4-lost <domain-name>;

The domain name of the LoST server for the client to use. This option is
included based on RFC 5223.

option vendor-class-identifier <string>;

This option is used by some DHCP clients to identify the vendor type and
possibly the configuration of a DHCP client. The information is a string of
bytes whose contents are specific to the vendor and are not specified in a
standard. To see what vendor class identifier clients are sending, you can
write the following in your DHCP server configuration file:

set vendor-string = option vendor-class-identifier;

This will result in all entries in the DHCP server lease database file for
clients that sent vendor-class-identifier options having a set statement that
looks something like this:

2.6. dhcp-options --- DHCP options

137

https://datatracker.ietf.org/doc/html/rfc868.html
https://datatracker.ietf.org/doc/html/rfc893.html
https://datatracker.ietf.org/doc/html/rfc5986.html
https://datatracker.ietf.org/doc/html/rfc5223.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

set vendor-string = "SUNW.Ultra-5_10";

The vendor-class-identifier option is normally used by the DHCP server
to determine the options that are returned in the vendor-encapsulated-
options option. Please see the section titled Vendor encapsulated options for
further information.

option vendor-encapsulated-options <string>;

This option can contain either a single vendor-specific value or one or more
vendor-specific suboptions. This option is not normally specified in the
DHCP server configuration file --- instead, a vendor class is defined for
each vendor, vendor class suboptions are defined, values for those subop-
tions are defined, and the DHCP server makes up a response on that basis.

Some default behaviours for well-known DHCP client vendors (currently,
the Microsoft Windows 2000 DHCP client) are configured automatically,
but otherwise this must be configured manually. Please see the section
titled Vendor encapsulated options for further information.

option vivso <string>;

This option can contain multiple separate options, one for each 32-bit En-
terprise ID. Each Enterprise-ID discriminated option then contains addi-
tional options whose format is defined by the vendor who holds that ID.
This option is usually not configured manually, but rather is configured via
intervening option definitions. Please see the section titled Vendor encapsu-
lated options for turther information.

option www-server <ip-address> [, <ip-address> ... |;

The WWW server option specifies a list of WWW servers available to the
client. Servers should be listed in order of preference.

option x-display-manager <ip-address> [, <ip-address> ... |;

This option specifies a list of systems that are running the X Window Sys-
tem Display Manager and are available to the client. Addresses should be
listed in order of preference.

2.6.5 Relay agent information option

RFC 3046 defines a series of encapsulated options that a relay agent can add to a DHCP
packet when relaying it to the DHCP server. The server can then make address allo-
cation decisions (or whatever other decisions it wants) based on these options. The
server also returns these options in any replies it sends through the relay agent, so that
the relay agent can use the information in these options for delivery or accounting
purposes.

RFC 3046 defines two options. To reference these options in the DHCP server, specify
the option space name, "agent", followed by a period, followed by the option name.
It is not normally useful to define values for these options in the server, although it is
permissible. These options are not supported in the client.

138 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc3046.html
https://datatracker.ietf.org/doc/html/rfc3046.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option agent.circuit-id <string>;

The circuit-id suboption encodes an agent-local identifier of the circuit
from which a DHCP client-to-server packet was received. It is intended
for use by agents in relaying DHCP responses back to the proper circuit.
The format of this option is currently defined to be vendor-dependent, and
will probably remain that way, although the current draft allows for the
possibility of standardizing the format in the future.

option agent.remote-id <string>;

The remote-id suboption encodes information about the remote host end of
a circuit. Examples of what it might contain include caller ID information,
username information, remote ATM address, cable modem ID, and similar
things. In principal, the meaning is not well-specified, and it should gener-
ally be assumed to be an opaque object that is administratively guaranteed
to be unique to a particular remote end of a circuit.

option agent. DOCSIS-device-class <uint32>;

The DOCSIS-device-class suboption is intended to convey information
about the host endpoint, hardware, and software, that either the host oper-
ating system or the DHCP server may not otherwise be aware of (but the
relay is able to distinguish). This is implemented as a 32-bit field (4 octets),
each bit representing a flag describing the host in one of these ways. So
far, only bit zero (being the least significant bit) is defined in RFC 3256. If
this bit is set to 1, the host is considered a CPE Controlled Cable Modem
(CCCM). All other bits are reserved.

option agent.link-selection <ip-address>;

The link-selection suboption is provided by relay agents to inform servers
what subnet the client is actually attached to. This is useful in those cases
where the giaddr (where responses must be sent to the relay agent) is not
on the same subnet as the client. When this option is present in a packet
from a relay agent, the DHCP server will use its contents to find a subnet
declared in configuration, and from here take one step further backwards
to any shared-network the subnet may be defined within; the client may be
given any address within that shared network, as normally appropriate.

2.6.6 Client FQDN suboptions

The Client FQDN option is defined in RFC 4702. Due to the complexity of the option
format, it is implemented as a suboption space rather than a single option. In general

this option should not be configured by the user --- instead it should be used as part
of an automatic DNS UPDATE system.

Note

If you wish to use any of these suboptions, we strongly recommend that refer to
RFC 4702. The documentation here is sketchy and incomplete in comparison, and

2.6. dhcp-options --- DHCP options 139

https://datatracker.ietf.org/doc/html/rfc3256.html
https://datatracker.ietf.org/doc/html/rfc4702.html
https://datatracker.ietf.org/doc/html/rfc4702.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

is just intended for reference by people who already understand the Client FQDN
option specification.

option fqdn.no-client-update <flag>;

When the client sends this option, if it is true, it means the client will not
attempt to update its A record. When sent by the server to the client, it
means that the client should not update its own A record.

option fqdn.server-update <flag>;

When the client sends this to the server, it is requesting that the server
update its A record. When sent by the server, it means that the has updated
(or is about to update) the client's A record.

option fqdn.encoded <flag>;

If true, this indicates that the domain name included in the option is en-
coded in DNS wire format, rather than as plain ASCII text. The client nor-
mally sets this to false if it doesn't support DNS wire format in the FQDN
option. The server should always send back the same value that the client
sent. When this value is set on the configuration side, it controls the format
in which the fqdn.fqdn suboption is encoded.

option fqdn.rcodel <flag>;
option fqdn.rcode2 <flag>;

These options specify the result of the updates of the A and PTR records,
respectively, and are only sent by the DHCP server to the DHCP client. The
values of these fields are those defined in the DNS protocol specification.

option fqdn.fqdn <text>;

Specifies the domain name that the client wishes to use. This can be a fully-
qualified domain name, or a single label. If there is no trailing . character
in the name, it is not fully-qualified, and the server will generally update
that name in some locally-defined domain.

option fqdn.hostname [never-set];

This option should never be set, but it can be read back using the op-
tion and config-option operators in an expression, in which case it returns
the first label in the fqdn.fqdn suboption. For example, if the value of
fqdn.fqdnis "foo.example.com.", then fqdn.hostname will be "foo".

option fqdn.domainname [never-set];

This option should never be set, but it can be read back using the option
and config-option operators in an expression, in which case it returns all
labels after the first label in the fqdn.fqdn suboption. For example, if the
value of fqdn.fqdn is "foo.example.com.", then fqdn.domainname
will be "example.com.". If this suboption value is not set, it means that

140 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

an unqualified name was sent in the Client FQDN option, or that no Client
FQDN option was sent at all.

2.6.7 NetWare/IP suboptions

RFC 2242 defines a set of encapsulated options for NetWare/IP clients. To use these
options in the DHCP server, specify the option space name "nwip" followed by a
period followed by the option name. The following options can be specified:

option nwip.nsq-broadcast <flag>;

If true, the client should use the NetWare Nearest Server Query to locate a
NetWare/IP server. The behaviour of the Novell client if this suboption is
false, or is not present, is not specified.

option nwip.preferred-dss <ip-address> [, <ip-address> ... |;

This suboption specifies a list of up to five IP addresses, each of which
should be the IP address of a NetWare Domain SAP /RIP server (DSS).

option nwip.nearest-nwip-server ip-address [, ip-address...];

This suboption specifies a list of up to five IP addresses, each of which
should be the IP address of a Nearest NetWare IP server.

option nwip.autoretries <uint8>;

Specifies the number of times that a NetWare/IP client should attempt to
communicate with a given DSS server at startup.

option nwip.autoretry-secs <uint8>;

Specifies the number of seconds that a Netware/IP client should wait be-
tween retries when attempting to establish communications with a DSS
server at startup.

option nwip.nwip-1-1 <uint8>;

If true, the NetWare/IP client should support NetWare/IP version 1.1 com-
patibility. This is only needed if the client will be contacting Netware/IP
version 1.1 servers.

option nwip.primary-dss ip-addressfB;

Specifies the IP address of the Primary Domain SAP/RIP Service server
(DSS) for this NetWare/IP domain. The NetWare/IP administration utility
uses this value as Primary DSS server when configuring a secondary DSS
server.

2.6.8 Standard DHCPv6 options

DHCPv6 options differ from DHCPv4 options partially due to using 16-bit code and
length tags, but semantically zero-length options are legal in DHCPv6, and multiple

2.6. dhcp-options --- DHCP options 141

https://datatracker.ietf.org/doc/html/rfc2242.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

options are treated differently. Whereas in DHCPv4 multiple options would be con-
catenated to form one option, in DHCPv6 they are expected to be individual instan-
tiations. Understandably, many options are not "allowed" to have multiple instances
in a packet - normally these are options which are digested by the DHCP protocol
software, and not by users or applications.

option dhcpé.client-id <string>;
This option specifies the client's DUID identifier. DUIDs are similar but
different from DHCPv4 client identifiers --- there are documented DUID
types:
o duid-lit
e duid-en
e duid-ll

This value should not be configured, but rather is provided by clients and treated as
an opaque identifier key blob by servers.

option dhcpé.server-id <string>;

This option specifies the server's DUID identifier. This option may be used
to configure an opaque binary blob for a DHCP server's identifier.

option dhcpé.ia-na <string>;

The Identity Association for Non-temporary Addresses (ia-na) carries as-
signed addresses that are not temporary addresses for use by the DHCPv6
client. This option is produced by the DHCPv6 server software, and should
not be configured.

option dhcpé.ia-ta <string>;

The Identity Association for Temporary Addresses (ia-ta) carries tempo-
rary addresses, which may change upon every renewal. There is no sup-
port for this in the current DHCPv6 software.

option dhcpé.ia-addr <string>;

The Identity Association Address option is encapsulated inside ia-na or ia-
ta options in order to represent addresses associated with those IAs. These
options are manufactured by the software, so should not be configured.

option dhcpé.oro <uintl6> [, <uintlé> ... |;

The Option Request Option ("ORQO") is the DHCPv6 equivalent of the
parameter-request-list option. Clients supply this option to ask servers
to reply with options relevant to their needs and use. This option must not
be directly configured, the request syntax in dhclient.conf (5) should
be used instead.

option dhcpé.preference <uint8>;

The preference option informs a DHCPv6 client which server is preferred
for use on a given subnet. This preference is only applied during the initial

142 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

stages of configuration --- once a client is bound to an IA, it will remain
bound to that IA until it is no longer valid or has expired. This value may
be configured on the server, and is digested by the client software.

option dhcpé.elapsed-time <uint16>;

The elapsed-time option is constructed by the DHCPv6 client software,
and is potentially consumed by intermediaries. This option should not be
configured.

option dhcpé.relay-msg <string>;

The relay-msg option is constructed by intervening DHCPv6 relay agent
software. This option is entirely used by protocol software, and is not
meant for user configuration.

option dhcpé6.unicast <ip6-address>;

The unicast option is provided by DHCPv6 servers which are willing (or
prefer) to receive Request, Renew, Decline, and Release packets from their
clients via unicast. Normally, DHCPv6 clients will multicast these mes-
sages. Per RFC 3315, the server will reject a unicast message received from
a client unless it previously sent (or would have sent) the unicast option to
that client. This option may be configured on the server at the global and
shared network level. When a unicast message is received, the server will
check an applicable definition of the unicast option. If such an option is
found, the message will be accepted; if not it will be rejected.

option dhcpé.status-code <status-code> [<string> |;

The status-code option is provided by DHCPv®6 servers to inform clients of
error conditions during protocol communication. This option is manufac-
tured and digested by protocol software, and should not be configured.

option dhcpé6.rapid-commit ;
The rapid-commit option is a zero-length option that clients use to indicate
their desire to enter into rapid-commit with the server.

option dhcpé6.vendor-opts <string>;

The vendor-opts option is actually an encapsulated sub-option space, in
which each Vendor-specific Information Option (VSIO) is identified by a
32-bit Enterprise-ID number. The encapsulated option spaces within these
options are defined by the vendors.

To make use of this option, the best way is to examine the section titled
Vendor encapsulated options, in particular the bits about the "vsio" option
space.

option dhcpé.interface-id <string>;

The interface-id option is manufactured by relay agents, and may be used
to guide configuration differentiating clients by the interface they are re-
motely attached to. It does not make sense to configure a value for this

2.6. dhcp-options --- DHCP options

143

https://datatracker.ietf.org/doc/html/rfc3315.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option, but it may make sense to inspect its contents.
option dhcpé6.reconf-msg <dhcpv6-message>;

The reconf-msg option is manufactured by servers, and sent to clients in
Reconfigure messages to inform them of what message the client should
Reconfigure using. There is no support for DHCPv6 Reconfigure exten-
sions, and this option is documented informationally only.

option dhcpé.reconf-accept ;

The reconf-accept option is a zero-length option that is included by
DHCPv6 clients that support the Reconfigure extensions, advertising that
they will respond if the server to ask them to Reconfigure. There is no sup-
port for DHCPv6 Reconfigure extensions, and this option is documented
informationally.

option dhcpé6.sip-servers-names <domain-list>;

The sip-servers-names option allows SIP clients to locate a local SIP server
that is to be used for all outbound SIP requests, a so-called "outbound proxy
server." If IPv6 addresses should be supplied instead, the sip-servers-
addresses option may be used.

option dhcp6.sip-servers-addresses <ip6-address> [, <ip6-address> ...];

The sip-servers-addresses option allows SIP clients to locate a local SIP
server that is to be used for all outbound SIP requests, a so-called "out-
bound proxy servers." If domain names should be supplied instead, the
sip-servers-names option may be used.

option dhcp6.name-servers <ip6-address> [, <ip6-address> ... |;

The name-servers option instructs clients about locally available recursive
DNS servers. It is easiest to describe this as the nameserver statement in
/etc/resolv.conf.

option dhcp6.domain-search <domain-list>;

The domain-search option specifies the client's domain search path to be
applied to recursive DNS queries. It is easiest to describe this as the
search statementin /etc/resolv.conf.

option dhcpé.ia-pd <string>;

The ia-pd option is manufactured by clients and servers to create a Prefix
Delegation binding --- to delegate an IPv6 prefix to the client. It is not
directly edited in dhcpd. conf (5) or dhclient.conf (5), but rather is
manufactured and consumed by the software.

option dhcpé.ia-prefix <string>;

The ia-prefix option is placed inside ia-pd options in order to identify
the prefix(es) allocated to the client. It is not directly edited in dhcpd.
conf (5) or dhclient.conf (5), but rather is manufactured and con-
sumed by the software.

144 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option dhcp6.nis-servers <ip6-address> [, <ip6-address> ... |;

The nis-servers option identifies, in order, NIS servers available to the
client.

option dhcp6.nisp-servers <ip6-address> [, <ip6-address> ... |;

The nisp-servers option identifies, in order, NIS+ servers available to the
client.

option nis-domain-name <domain-list>;

The nis-domain-name option specifies the NIS domain name the client is
expected to use, and is related to the nis-servers option.

option dhcp6.nis-domain-name <domain-name>;

The nis-domain-name option specifies NIS domain name the client is ex-
pected to use, and is related to nis-servers option.

option nisp-domain-name <domain-list>;

The nisp-domain-name option specifies the NIS+ domain name the client
is expected to use, and is related to the nisp-servers option.

option dhcp6.nisp-domain-name <domain-name>;

The nisp-domain-name option specifies NIS+ domain name the client is
expected to use, and is related to nisp-servers option.

option dhcp6.sntp-servers <ip6-address> [, <ip6-address> ... |;

The sntp-servers option specifies a list of local SNTP servers available for
the client to synchronize their clocks.

option dhcpé.info-refresh-time <uint32>;

The info-refresh-time option gives DHCPv6 clients using Information-
request messages a hint as to how long they should between refreshing
the information they were given.

Note

This option will only be delivered to the client, and be likely to affect the
client's behaviour, if the client requested the option.

option dhcp6.becms-server-d <domain-list>;

The bcms-server-d option contains the domain names of local BCMS
(Broadcast and Multicast Control Services) controllers which the client may
use.

option dhcp6.bcms-server-a <ip6-address> [, <ip6-address> ... |;

2.6. dhcp-options --- DHCP options 145

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The bcms-server-a option contains the IPvé addresses of local BCMS
(Broadcast and Multicast Control Services) controllers which the client may
use.

option dhcpé6.geoconf-civic <string>;

A string to hold the geoconf civic structure. This option is included based
on RFC 4776.

option dhcpé6.remote-id <string>;

The remote-id option is constructed by relay agents, to inform the server of
details pertaining to what the relay knows about the client as what port it
is attached to, and so forth). The contents of this option have some vendor-
specific structure (similar to VSIO), but we have chosen to treat this option
as an opaque field.

option dhcp6.subscriber-id <string>;

The subscriber-id option is an opaque field provided by the relay agent,
which provides additional information about the subscriber in question.
The exact contents of this option depend upon the vendor and/or the op-
erator's configuration of the remote device, and as such is an opaque field.

option dhcp6.fqdn <string>;

The fqdn option is normally constructed by the client or server, and ne-
gotiates the client's Fully Qualified Domain Name, as well as which is re-
sponsible for Dynamic DNS Updates. See the section titled Client FODN
suboptions for full details (the DHCPv4 and DHCPv6 FQDN options use
the same "fqdn." encapsulated space, so are in all ways identical).

option dhcpé6.pana-agent <ip6-address> [, <ip6-address> ... |;

A set of IPv6 addresses of a PAA for the client to use. The addresses are
listed in preferred order. This option is included based on RFC 5192.

option dhcp6.new-posix-timezone <tfext>;

This option specifies a string suitable for the TZ variable. This option is
included based on RFC 4833.

option dhcp6.new-tzdb-timezone <text>;

This option specifies a name of a zone entry in the TZ database. This option
is included based on RFC 4833.

option dhcpé.ero <uint16> [, <uintlé6> ... |;

A list of the options requested by the relay agent. This option is included
based on RFC 4994.

option dhcp6.1q-query <string>;
The 1g-query option is used internally for lease query.

option dhcpé.client-data <string>;

146 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc4776.html
https://datatracker.ietf.org/doc/html/rfc5192.html
https://datatracker.ietf.org/doc/html/rfc4833.html
https://datatracker.ietf.org/doc/html/rfc4833.html
https://datatracker.ietf.org/doc/html/rfc4994.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The client-data option is used internally for lease query.
option dhcpé.clt-time <uint32>;

The clt-time option is used internally for lease query.
option dhcpé.1q-relay-data <ip6-address> <string>;

The 1g-relay-data option is used internally for lease query.
option dhcp6.1q-client-link <ip6-address> [, <ip6-address> ... |;

The 1q-client-link option is used internally for lease query.
option dhcp6.v6-lost <domain-name>;

The domain name of the LoST server for the client to use. This option is
included based on RFC 5223.

option dhcpé6.capwap-ac-v6 <ip6-address> [, <ip6-address> ... |;

A list of IPv6 addresses of CAPWAP ACs that the WIP may use. The ad-
dresses are listed in preference order. This option is included based on RFC
5417.

option dhcpé.relay-id <string>;
The DUID for the relay agent. This option is included based on RFC 5460.
option dhcp6.v6-access-domain <domain-name>;

The domain name associated with the access network for use with LIS Dis-
covery. This option is included based on RFC 5986.

option dhcp6.sip-ua-cs-list <domain-list>;

The list of domain names in the SIP User Agent Configuration Service Do-
mains. This option is included based on RFC 6011.

option dhcpé.bootfile-url <text>;
The URL for a boot file. This option is included based on RFC 5970.
option dhcpé.bootfile-param <string>;

A string for the parameters to the bootfile. See RFC 5970 for more de-
scription of the layout of the parameters within the string. This option is
included based on RFC 5970.

option dhcpé.client-arch-type <uint16> [, <uintl6> ...];

A list of one or more architecture types described as 16-bit values. This
option is included based on RFC 5970.

option dhcp6.nii <uint8> <uint8> <uint8>;

The nii (client network interface identifier) option supplies information
about a client's level of UNDI support. The values are, in order, the type,
the major value and the minor value. This option is included based on RFC
5970.

2.6. dhcp-options --- DHCP options

147

https://datatracker.ietf.org/doc/html/rfc5223.html
https://datatracker.ietf.org/doc/html/rfc5417.html
https://datatracker.ietf.org/doc/html/rfc5417.html
https://datatracker.ietf.org/doc/html/rfc5460.html
https://datatracker.ietf.org/doc/html/rfc5986.html
https://datatracker.ietf.org/doc/html/rfc6011.html
https://datatracker.ietf.org/doc/html/rfc5970.html
https://datatracker.ietf.org/doc/html/rfc5970.html
https://datatracker.ietf.org/doc/html/rfc5970.html
https://datatracker.ietf.org/doc/html/rfc5970.html
https://datatracker.ietf.org/doc/html/rfc5970.html
https://datatracker.ietf.org/doc/html/rfc5970.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

option dhcpé6.aftr-name <domain-name>;

A domain name of the AFTR tunnel endpoint. This option is included
based on RFC 6334.

option dhcpé.erp-local-domain-name <domain-name>;

A domain name for the ERP domain. This option is included based on RFC
6440.

option dhcp6.rdnss-selection <ip6-address> <uint8> <domain-name>;

RDNSS information consists of an IPv6 address of RDNSS, an 8-bit flags
tield and a domain-list of domains for which the RDNSS has special knowl-
edge. This option is included based on RFC 6731.

option dhcpé.client-linklayer-addr <string>;

A client link-layer address. The first two bytes must be the type of the link-
layer followed by the address itself. This option is included based on RFC
6939.

option dhcpé.link-address <ip6-address>;

An IPv6 address used by a relay agent to indicate to the server the link on
which the client is located. This option is included based on RFC 6977.

option dhcpé6.solmax-rt <uint32>;

A value to override the default for SOL_MAX RT. This is a 32-bit value.
This option is included based on RFC 7083.

option dhcp6.inf-max-rt <uint32>;

A value to override the default for INF_ MAX _RT. This is a 32-bit value.
This option is included based on RFC 7083.

2.6.9 Accessing DHCPvV6 relay options
vérelay (<relay-number>, *<option>)

This function allows access to an option that has been added to a packet by
a relay agent. Relay-number value selects the relay to examine and option
is the option to find. In DHCPv6 each relay encapsulates the entire previ-
ous message into an option, adds its own options (if any) and sends the
result onwards. The RFC specifies a limit of 32 hops. A relay-number of 0
is a no-op and means don't look at the relays. 1 is the relay that is closest
to the client, 2 would be the next in from the client and so on. Any value
greater than the max number of hops is which is closest to the server in-
dependent of number. To use this option in a class statement, a statement
similar to the following may be used:

match if verelay(l, option dhcp6.subscriber-id) =
~"client_1";

148 Chapter 2. Configuration and data

https://datatracker.ietf.org/doc/html/rfc6334.html
https://datatracker.ietf.org/doc/html/rfc6440.html
https://datatracker.ietf.org/doc/html/rfc6440.html
https://datatracker.ietf.org/doc/html/rfc6731.html
https://datatracker.ietf.org/doc/html/rfc6939.html
https://datatracker.ietf.org/doc/html/rfc6939.html
https://datatracker.ietf.org/doc/html/rfc6977.html
https://datatracker.ietf.org/doc/html/rfc7083.html
https://datatracker.ietf.org/doc/html/rfc7083.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.6.10 Defining new options

dhclient (8) and dhcpd (8) provide the capability to define new options. Each
DHCP option has a name, a code, and a structure. The name can be used by a human
to refer to the option. The code is a number, used by the DHCP server and client to
refer to an option. The structure describes what the content of an option looks like.

To define a new option, a name must be chosen for it that is not in use for some other
option. For example, the "host-name" option name cannot be used because the
DHCP protocol already defines a host-name option, which is documented in this man-
ual page. If an option name doesn't appear in this manual page, it can be used, but it's
probably a good idea to put some kind of unique string prefix at the beginning of the
name so that future options don't clash with this name. For example, an option may
be named as "my-local-host-name" with some confidence that no official DHCP
option name will ever begin with the "my-local-" string prefix.

Once a name has been chosen for the option, a code has to be chosen for it next. All
codes between 224 and 254 are reserved as site-local DHCP options, so any one of these
values may be used for a local site (but not for a product/application). In RFC 3942,
site-local space was moved from starting at 128 to starting at 224. In practice, some
vendors have interpreted the protocol rather loosely and have used option code values
greater than 128 themselves. There's no real way to avoid this problem, and it was
thought to be unlikely to cause too much trouble in practice. If a vendor-documented
option code uses values in either the new or old site-local spaces, please contact the
vendor and inform them about RFC 3942.

The structure of an option is simply the format in which the option data appears.
dhcpd (8) currently supports a few simple types, like integers, booleans, strings and
IP addresses, and it also supports the ability to define arrays of single types or arrays
of fixed sequences of types.

New options are declared as follows:
option <new-name> code <new-code> = <definition>;

The values of <new-name> and <new-code> should be the chosen name and code for
the new option. The definition should be the definition of the structure of the option.

The following simple option type definitions are supported:

2.6.10.1 Boolean
option <new-name> code <new-code> = boolean;

An option of type boolean is a flag with a value of either t rue or false, or on (true)
or of f (false).

An example of defining and using a boolean option follows:

option use—-zephyr code 180 = boolean;
option use—-zephyr on;

2.6. dhcp-options --- DHCP options 149

https://datatracker.ietf.org/doc/html/rfc3942.html
https://datatracker.ietf.org/doc/html/rfc3942.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.6.10.2 Integer
option <new-name> code <new-code> = [<sign> | integer <width>;

The <sign> token should either be blank, unsigned or signed. The width can be either
8, 16 or 32, and refers to the number of bits in the integer.

An example of defining and using an integer option follows:

option sgl-connection-max code 192 = unsigned integer 16;
option sgl-connection-max 1536;

2.6.10.3 IPv4 address
option <new-name> code <new-code> = ip-address;

An option whose structure is an IP address can be expressed either as a domain name
or as a dotted quad.

An example of defining and using an ip-address option follows:

option sqgl-server—-address code 193 = ip-address;
option sgl-server—-address sqgl.example.com;

2.6.10.4 IPv6 address
option <new-name> code <new-code> = ip6-address;

An option whose structure is an IPv6 address must be expressed as a valid IPv6 ad-
dress.

An example of defining and using an ip6-address option follows:

option dhcpb6.some-server code 1234 = array of ip6-address;
option dhcpb6.some-server 3ffe:bbbb:aaaa:aaaa::1
~3ffe:bbbb:aaaa:aaaa::2;

I

Note

In this example, the array option type is also used. See the array option type defi-
nition in this manual page.

2.6.10.5 Text
option <new-name> code <new-code> = text;
An option whose type is text will encode an ASCII text string.

An example of defining and using a text option follows:

option sgl-default-connection-name code 194 = text;
option sgl-default-connection—-name "PRODZA";

150 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2.6.10.6 Data string
option <new-name> code <new-code> = string;

An option whose type is a data string is essentially just a collection of bytes, and can
be specified either as quoted text, like the text, or as a list of hexadecimal contents
separated by colons whose must be between 0 and FF.

An example of defining and using a string option follows:

option sgl-identification-token code 195 = string;
option sgl-identification-token 17:23:19:a6:42:ea:99:7c:22;

2.6.10.7 Domain list
option <new-name> code <new-code> = domain-list [compressed];

An option whose type is domain-list is a list of domain names in RFC 1035 wire for-
mat, separated by root labels. The optional compressed keyword indicates if the op-
tion should be compressed relative to the start of the option contents (not the packet
contents).

Note

When in doubt, omit the compressed keyword. When the software receives an op-
tion that is compressed and the compressed keyword is omitted, it will still decom-
press the option (relative to the option contents field). The keyword only controls
whether or not transmitted packets are compressed.

Note

When domain-list formatted options are output as environment variables to
dhclient-script (8), the standard DNS escape mechanism is used: they are
decimal. For example, this is appropriate for direct use in /etc/resolv.conf.

2.6.10.8 Encapsulation
option <new-name> code <new-code> = encapsulate <identifier>;

An option whose type is encapsulate will encapsulate the contents of the option space
specified in <identifier>. Examples of encapsulated options in the DHCP protocol
as it currently exists include the vendor-encapsulated-options option, the netware-
suboptions option, and the relay-agent-information option.

An example of defining and using an encapsulate option follows:

option space local;
option local.demo code 1 = text;
(continues on next page)

2.6. dhcp-options --- DHCP options 151

https://datatracker.ietf.org/doc/html/rfc1035.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

option local-encapsulation code 197 = encapsulate local;
option local.demo "demo";

2.6.10.9 Arrays
option <new-name> code <new-code> = array of <type>;

Options can contain arrays of any of the above types except for the text and string
types, which aren't currently supported in arrays.

An example of defining and using array of follows:

option kerberos-servers code 200 = array of ip—-address;
option kerberos-servers 10.20.10.1, 10.20.11.1;

2.6.10.10 Records

Options can also contain data structures consisting of a sequence of data types, which
is sometimes called a record type.

An example of defining and using a record type follows:

option contrived-001 code 201 = { boolean, integer 32, text };
option contrived-001 on 1772 "contrivance";

It is also possible to have options that are arrays of records, for example:

option new-static-routes code 201 = array of {
ip—address, ip-address, ip—-address, integer 8

)i

option static-routes
10.0.0.0 255.255.255.0 net-0-rtr.example.com 1,
10.0.1.0 255.255.255.0 net-l-rtr.example.com 1,
10.2.0.0 255.255.224.0 net-2-0-rtr.example.com 3;

2.6.11 Vendor encapsulated options

The DHCP protocol defines the vendor-encapsulated-options option, which allows
vendors to define their own options that will be sent encapsulated in a standard DHCP
option. It also defines the Vendor Identified Vendor Sub Options option ("VIVSO"),
and the DHCPv6 protocol defines the Vendor-specific Information Option ("VSIO").
The format of all of these options is usually internally a string of options, similarly to
other normal DHCP options. The VIVSO and VSIO options differ in that they contain
options that correspond to vendor Enterprise-ID numbers (assigned by IANA), which
then contain options according to each Vendor's specifications. The vendor's docu-
mentation will have to be consulted in order to form options to their specification.

152 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

The value of these options can be set in one of two ways. The first way is to simply
specify the data directly, using a text string or a colon-separated list of hexadecimal
values. For help in forming these strings, please refer to RFC 2132 for the DHCPv4
Vendor Specific Information Option, RFC 3925 for the DHCPv4 Vendor Identified Ven-
dor Sub Options, or RFC 3315 for the DHCPv6 Vendor-specific Information Option.

For example:

option vendor-encapsulated-options
2:4:
AC:11:41:1:
3el2s
73:75:6€:64:68:63:70:2d:73:65:72:76:65:72:31:37:2d:31:
4:12:
2f:65:78:70:6f£:72:74:2f:72:6f:6f:74:2f:69:38:36:70:63;
option vivso
00:00:09:bf:0E:
01:0c:
48:65:6c:6c:6£:20:77:6£:72:6c:064:21;
option dhcp6.vendor-opts
00:00:09:bf:
00:01:00:0c:
48:65:6c:6c:6f£:20:77:6f:72:6c:64:21;

The second way of setting the value of these options is to have the DHCP server gen-
erate a vendor-specific option buffer. To do this, you must do four things: define an
option space, define some options in that option space, provide values for them, and
specify that that option space should be used to generate the relevant option.

To define a new option space in which vendor options can be stored, use the option
Space statement:

option space <name> [[code width <number>] [length width <number>] [hash size
<number>1];

The numbers following code width, length width, and hash size respectively identify
the number of bytes used to describe option codes, option lengths, and the size in
buckets of the hash tables to hold options in this space. Most DHCPv4 option spaces
use 1 byte codes and lengths, which is the default, whereas most DHCPv6 option
spaces use 2 byte codes and lengths.

The code and length widths are used in DHCP protocol --- you must configure these
numbers to match the applicable option space you are configuring. They each default
to 1. Valid values for code widths are 1, 2 or 4. Valid values for length widths are 0, 1
or 2. Most DHCPv4 option spaces use 1 byte codes and lengths, which is the default,
whereas most DHCPv6 option spaces use 2 byte codes and lengths. A zero-byte length
produces options similar to the DHCPv6 Vendor-specific Information Option, but not
their contents!

The hash size defaults depend upon the code width selected, and may be 254 or 1009.
Valid values range between 1 and 65535.

2.6. dhcp-options --- DHCP options 153

https://datatracker.ietf.org/doc/html/rfc2132.html
https://datatracker.ietf.org/doc/html/rfc3925.html
https://datatracker.ietf.org/doc/html/rfc3315.html

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Warning

The higher you configure the hash size, the more memory will be used. It is con-
sidered good practice to configure a value that is slightly larger than the estimated
number of options you plan to configure within the space.

The name can then be used in option definitions, as described earlier in this document.
For example:

option space SUNW code width 1 length width 1 hash size 3;
option SUNW.server—-address code 2 = ip-address;

option SUNW.server—name code 3 = text;

option SUNW.root-path code 4 = text;

option space BANU code width 1 length width 1 hash size 3;
option BANU.sample code 1 = text;

option vendor.BANU code 2495 = encapsulate vivso-sample;
option vendor-class.BANU code 2495 = text;

option BANU.sample "configuration text here";
option vendor-class.BANU "vendor class here";

option space docsis code width 2 length width 2 hash size 17;

option docsis.tftp-servers code 32 = array of ip6-address;
option docsis.cablelabs-configuration-file code 33 = text;
option docsis.cablelabs-syslog-servers code 34 = array of ip6-
—~address;

option docsis.device—-id code 36 = string;

option docsis.time-servers code 37 = array of ip6-address;
option docsis.time-offset code 38 = signed integer 32;

option vsio.docsis code 4491 = encapsulate docsis;

Once you have defined an option space and the format of some options, you can set
up scopes that define values for those options, and you can say when to use them. For
example, suppose you want to handle two different classes of clients. Using the option
space definition shown in the previous example, you can send different option values
to different clients based on the vendor-class-identifier option that the clients send, as
follows:

class "vendor-classes" {
match option vendor-class-identifier;

subclass "vendor-classes" "SUNW.Ultra-5_10" ({
vendor-option-space SUNW;
option SUNW.root-path "/export/root/sparc";

(continues on next page)

154 Chapter 2. Configuration and data

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

(continued from previous page)

subclass "vendor-classes" "SUNW.i86pc" {
vendor-option—-space SUNW;
option SUNW.root-path "/export/root/i86pc";
}

option SUNW.server—address 172.17.65.1;
option SUNW.server-name "sundhcp-serverl7-1";

option vivso-sample.sample "Hello world!";

option docsis.tftp-servers ::1;

As you can see in the preceding example, regular scoping rules apply, so you can
define values that are global in the global scope, and only define values that are
specific to a particular class in the local scope. The vendor-option-space declara-
tion tells the DHCP server to use options in the SUNW option space to construct the
DHCPv4 vendor-encapsulated-options option. This is a limitation of that option ---
the DHCPv4 VIVSO and the DHCPv6 VSIO options can have multiple vendor defini-
tions all at once (even transmitted to the same client), so it is not necessary to configure
this.

2.6.12 See also

dhcpd.conf (5), dhcpd.leases (5), dhclient.conf(5), dhcp-eval(5),
dhcpd (8), dhclient (8)

2.6.13 Copyright

Copyright (C) 2025 Banu Systems Private Limited. All rights reserved.
Copyright (c) 2012-2016 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 2004-2010 by Internet Systems Consortium, Inc. ("ISC").
Copyright (c) 1996-2003 by Internet Software Consortium.

2.6. dhcp-options --- DHCP options 155

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

156 Chapter 2. Configuration and data

CHAPTER
THREE

RELEASE NOTES

This documentation corresponds to Lease version 1.99.6.20250811025749.965cadab44.

3.1 Lease 1.99.6

This is the first release of Lease. Lease has been a part of a source code tree with
other dependency components such as Loop for some time now, where it had been
maintained with the extensive code refactoring that was done in the tree. It was not
packaged for release previously.

The following are release notes for Lease 1.99.6:

* RT1606: Lease packages are now built. Lease is part of a source code tree with
other components such as Loop, and previously only Loop was packaged. Other
components of the tree are also packaged now as part of a multi-package RPM
spec file.

To install Lease, please see the chapter titled chap_installation.

3.2 Lease version humbering scheme

Lease version numbers have the grammar <MAJOR>.<MINOR>.<PATCH>.<COMMIT-
TIMESTAMP>.<COMMIT-HASH>. The MAJOR and MINOR version numbers
together represent a source code branch of Lease (see Lease branches).

* The MAJOR version number is incremented when configuration options, API,
and behavior of features change compared to the existing version. Switching to
anew MAJOR version may require modifying existing config files to make them
compatible with the new version.

¢ The MINOR version number is incremented when new configuration options,
API, and features are introduced that are compatible with existing configuration
options. Switching to a new MINOR version will not require modifying existing
config files to make them compatible with the new version.

* The PATCH version number is incremented when only bugs have been fixed in
a new version. Switching to a new PATCH version will not require modifying
existing config files to make them compatible with the new version.

157

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

* The COMMIT-TIMESTAMP field is auto-generated and contains the UTC times-
tamp of the source code commit from which the Lease release was made. The
timestamp value is formatted as YYYYMMDDHHMMSS, as the output of:

date +3YTmSATHIMSS

e The COMMIT-HASH field is auto-generated and contains the abbreviated com-
mit hash of the source code commit from which the Lease release was made. The
hash value is formatted as the output of:

git log —-nl —--reverse —--pretty=%h

For example,

e If you're upgrading from version 1.2.1 to version 1.4.0, Lease's config files should
not require any changes. You may also check for new features that have become
available in the 1.4 branch.

¢ If you're upgrading from version 1.2.1 to version 2.0.0, it is possible that some of
the contents of your existing config files may need changes. You may also check
for new features that have become available in the 2.0 branch.

* If you're upgrading from version 1.2.1 to version 1.2.4, Lease's config files should
not require any changes. The newer version only contains bugfixes.

Note

During a major version's release series, features and/or programs scheduled for
removal in the next major release may be marked as deprecated. They will however
still be supported until the end-of-life of that major release.

3.2.1 Stable and development versions

Even-numbered minor versions indicate stable branch releases, whereas odd-
numbered minor versions indicate development banch releases. For example,

e 1.2.01is a stable branch release,

* 1.3.0is a development branch release,
* 1.99.0 is a development branch release,
e 2.0.3is a stable branch release, and

¢ 2.1.1is a development branch release.

Warning

Development branch releases should not be used in production as their features
and interfaces may change. Development branch releases may not work properly,
may have unexpected behaviors, may crash, etc.

158 Chapter 3. Release notes

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

3.3 Lease branches

The following is information on current Lease branches.

Branch Type First release date End-of-life date
1.99 Development 2024-12-10 To be announced
2.0 Stable To be announced To be announced

Development branches have no planned end-of-life. Typically, development on such

branches is stopped when a new MINOR+1 or MAJOR+1 stable branch is created off
it.

3.4 History of Lease

ISC DHCP was originally written by Ted Lemon under a contract with Vixie Labs with
the goal of being a complete reference implementation of the DHCP protocol. Fund-
ing for this project was provided by Internet Systems Consortium. The first release
of the ISC DHCP distribution in December 1997 included just the DHCP server. Re-
lease 2 in June 1999 added a DHCP client and a BOOTP/DHCP relay agent. DHCP 3
was released in October 2001 and included DHCP failover support, OMAPI, Dynamic
DNS, conditional behaviour, client classing, and more. Version 3 of the DHCP server
was funded by Nominum, Inc. The 4.0 release in December 2007 introduced DHCPv6
protocol support for the server and client.

After the project was abandoned upstream, Lease was started by a former Infoblox
NIOS developer with the goal of upgrading the codebase to modern standards, and
integrating better with Loop (which is a dependency of Lease). Lease forked from the
last ISC-licensed ISC-DHCP codebase. While externally it resembles ISC-DHCP with
its similar configuration language and programs, its code has undergone considerable
changes and continues to evolve at a high rate.

3.3. Lease branches 159

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

160 Chapter 3. Release notes

CHAPTER
FOUR

LICENSE

Copyright (C) 2024-2025 Banu Systems Private Limited. All rights reserved.

This product is not open source software. Permission is not granted to redistribute this
product.

A proprietary software license is used as an overall license for distributing binaries,
documentation, and other works of this product.

THE SOFTWARE IS PROVIDED "AS IS" AND BANU DISCLAIMS ALL WAR-
RANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL BANU
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions of this product are covered by one or more of the following original copyright
and license notices. This product cannot re-license the original unmodified effects and
such portions of the product are covered by their original licenses listed below (note
that they only cover portions of this product).

Copyright (c) 2004-2018 by Internet Systems Consortium, Inc. ("ISC") Copyright (c)
1995-2003 by Internet Software Consortium

Permission to use, copy, modify, and/or distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

161

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Copyright (C) 1996-2001 Nominum, Inc. Copyright (C) 2000, 2001, 2004-2015
Nominum, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WAR-
RANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
NOMINUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (C) 1995-2000 by Network Associates, Inc.

Permission to use, copy, modify, and/or distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND ISC AND NETWORK ASSOCIATES
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUD-
ING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (C) 2002 Stichting NLnet, Netherlands, stichting@nlnet.nl.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND STICHTING NLNET DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
STICHTING NLNET BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1987, 1990, 1993, 1994 The Regents of the University of California. All
rights reserved.

162 Chapter 4. License

mailto:stichting@nlnet.nl

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS " " AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) The Internet Society 2005. This version of this module is part of RFC
4178; see the RFC itself for full legal notices.

(The above copyright notice is per RFC 3978 5.6 (a), q.v.)

Copyright (c) 2004 Masarykova universita (Masaryk University, Brno, Czech Republic)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

163

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1997 - 2003 Kungliga Tekniska Hogskolan (Royal Institute of Technology,
Stockholm, Sweden). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS " " AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1998 Doug Rabson All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

164 Chapter 4. License

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " " AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright ((c)) 2002, Rice University All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

* Neither the name of Rice University (RICE) nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

This software is provided by RICE and the contributors on an "as is" basis, without any
representations or warranties of any kind, express or implied including, but not lim-
ited to, representations or warranties of non-infringement, merchantability or fitness
for a particular purpose. In no event shall RICE or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this software, even if advised of the possibility of such damage.

Copyright (c) 1993 by Digital Equipment Corporation.

Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this per-
mission notice appear in all copies, and that the name of Digital Equipment Corpora-
tion not be used in advertising or publicity pertaining to distribution of the document
or software without specific, written prior permission.

165

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

THE SOFTWARE IS PROVIDED "AS IS" AND DIGITAL EQUIPMENT CORP. DIS-
CLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL DIGITAL EQUIPMENT CORPORATION BE LIABLE FOR ANY SPE-
CIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Copyright 2000 Aaron D. Gifford. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S)
“TASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1998 Doug Rabson. Copyright (c) 2001 Jake Burkholder. All rights re-
served.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

166 Chapter 4. License

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " " AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1999-2000 by Nortel Networks Corporation

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND NORTEL NETWORKS DISCLAIMS
ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT

167

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

SHALL NORTEL NETWORKS BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 2000-2002 Japan Network Information Center. All rights reserved.
By using this file, you agree to the terms and conditions set forth bellow.
LICENSE TERMS AND CONDITIONS

The following License Terms and Conditions apply, unless a different license is ob-
tained from Japan Network Information Center ("JPNIC"), a Japanese association,
Kokusai-Kougyou-Kanda Bldg 6F, 2-3-4 Uchi-Kanda, Chiyoda-ku, Tokyo 101-0047,

Japan.

1. Use, Modification and Redistribution (including distribution of any modified or
derived work) in source and/or binary forms is permitted under this License
Terms and Conditions.

2. Redistribution of source code must retain the copyright notices as they appear in
each source code file, this License Terms and Conditions.

3. Redistribution in binary form must reproduce the Copyright Notice, this License
Terms and Conditions, in the documentation and/or other materials provided
with the distribution. For the purposes of binary distribution the "Copyright No-
tice" refers to the following language: "Copyright (c) 2000-2002 Japan Network
Information Center. All rights reserved."

4. The name of JPNIC may not be used to endorse or promote products derived
from this Software without specific prior written approval of JPNIC.

5. Disclaimer/Limitation of Liability: THIS SOFTWARE IS PROVIDED BY JPNIC
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL JPNIC BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Copyright (C) 2004 Nominet, Ltd.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

168 Chapter 4. License

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

THE SOFTWARE IS PROVIDED "AS IS" AND NOMINET DISCLAIMS ALL WAR-
RANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE
LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright RSA Security Inc.

License to copy and use this software is granted provided that it is identified as "RSA
Security Inc. PKCS #11 Cryptographic Token Interface (Cryptoki)" in all material men-
tioning or referencing this software.

License is also granted to make and use derivative works provided that such works
are identified as "derived from the RSA Security Inc. PKCS #11 Cryptographic Token
Interface (Cryptoki)" in all material mentioning or referencing the derived work.

RSA Security Inc. makes no representations concerning either the merchantability
of this software or the suitability of this software for any particular purpose. It is
provided "as is" without express or implied warranty of any kind.

Copyright (c) 1996, David Mazieres <dm@uun.org> Copyright (c) 2008, Damien Miller
<djm@openbsd.org> Copyright (c) 2013, Markus Friedl <markus@openbsd.org>
Copyright (c) 2014, Theo de Raadt <deraadt@openbsd.org>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

169

mailto:dm@uun.org
mailto:djm@openbsd.org
mailto:markus@openbsd.org
mailto:deraadt@openbsd.org

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

3. All advertising materials mentioning features or use of this software must dis-
play the following acknowledgment: "This product includes software developed
by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.OpenSSL.
Org/)”

4. The names "OpenSSL Toolkit" and "OpenSSL Project” must not be used to en-
dorse or promote products derived from this software without prior written per-
mission. For written permission, please contact licensing@OpenSSL.org.

5. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledg-
ment: "This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit (http:/ /www.OpenSSL.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " AS IS" AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1995, 1997, 1998 The NetBSD Foundation, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CON-
TRIBUTORS " " AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

170 Chapter 4. License

http://www.OpenSSL.org/
http://www.OpenSSL.org/
mailto:licensing@OpenSSL.org
http://www.OpenSSL.org/

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

171

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

172 Chapter 4. License

CHAPTER
FIVE

DATA AND PRIVACY

Lease implements---as part of its software features---support for logging various types
of activity for the administrator to use.

* Logging may be performed on behalf of the administrator on the machine where
the Lease software is installed.

* Log mesages may contain personal data about a user such as, but not limited to,
IP addresses, MAC addresses, hostnames, TSIG key names, timestamps, etc.

We note that:

* Lease does not share user data or logs with Banu Systems Private Limited, unless
the administrator explicitly configures it to do so.

¢ Lease does not share user data or logs with other companies, organizations, or
persons, unless the administrator explicitly configures it to do so.

173

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

174 Chapter 5. Data and privacy

Symbols
-1

command
-4
command
-406
command
command
command
command
command
command
command
command
command

command

command

——dad-wait-time

command

line

line

line

line

line

line

line

line

line

line

line

line

line

line

——early-chroot

command
—-—-no-pid
command
—-—version
command
-a
command

line

line

line

line

option, 19
option, 5, 18, 29
option, 5, 19
option, 18,29
option, 30
option, 21,30
option, 20,32
option, 21
option, 21
option, 21
option, 21
option, 5,21
option, 31
option, 21
option, 6
option,7, 22,30
option, 6,20

option, 30

command
-cf
command
—chroot
command
-d
command
—-df
command
-e
command
-f
command
-9
command
—group
command

command
-id

command
-iu

command
-1

command
-1f

command

command

command
-nw
command
P
command
_pf
command
—play

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

INDEX

option, 30
option, 6,22

option, 6

option, 5,19, 30

option, 22
option, 19
option,5
option, 20

option, 6

option, 20, 30

option, 31
option, 31
option, 32
option, 7,22
option, 31
option, 19

option, 19

option, 5, 20,30

option,7,22,30

175

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

command
—-q
command

command
-S

command
-sf

command
-t

command
-tf

command
-u

command
—-user

command

command
command

command

C

line

line

line

line

line

line

line

line

line

line

line

line

option, 6
option, 5,19, 30
option, 19
option, 5, 20, 32
option, 22
option,b5
option, 6
option, 32
option,b5

option, 19

-df, 22
-e, 19
-£,5

-g, 20
—-group, 6
-1,20, 30
-id, 31
-iu, 31
-1,32
-1£,7,22
-m, 31

-n, 19
-nw, 19
-p, 5,20, 30
-pf,7,22,30
-play, 6
-q, 5,19, 30
-r, 19
-s,5,20,32

option, 19

option, 20

command line option

-1,19

-4,5,18,29
-406,5,19

-6,18,29
-3, 30
-D, 21, 30
-1,20,32
-N, 21
-p, 21
-R, 21
-5, 21
-T,5,21
-U, 31

—-—dad-wait-time, 21
-—early-chroot, 6
--no-pid, 7, 22,30

——version, 6,20

-a, 30
-c, 30

-cf, 6,22

—chroot, 6

-d, 5,19, 30

-sf,22

-t,5

-tf,6
-u, 32
-user, b
-v, 19
-w, 19
-x,20

R

REFC
REC
REC
REC
RFC
RFC
REC
REFC
REC
REC
RFC
REFC
REC
REC
REC
RFC
REFC
REFC
REC

1001, 131
1002, 131

1035,74,128,129,131, 151

1042,129
1048,72,73

1122,124,132,133

1179, 130
1191,133
1256,134

2131,75,102,117
2132,126,129, 153

2136, 58
2165,134
2242,132,141
2373,89
2937,130
3011,135
3046,138

176

Index

Lease User Manual, Release 1.99.6.20250811025749.965cadab44

REC
REC
REC
RFC
REC
REC
REC
REC
RFC
REC
REC
REC
REC
RFEC
REFC
REC
REC
REC
RFC
REFC
REC
REC
REC
REC
RFC
REC
REC
REC
REC
RFC
REFC
REC
REC
REC
RFC
REC
REC
REC
REC

3256,139

3315,87,143,153

3527,31

3633, 65,84

3925,153
3942,149
4361, 20

4701, 20, 58, 60
4702, 20, 58, 60, 139

4703, 58

4776,129, 146
4833,133, 136, 146

4941, 65
4994, 146

5192,133, 146
5223,137,147
5417,124, 147

5460, 147
5494, 58
5905, 132
5969, 133
5970, 147

5986, 137, 147

6011, 147
6334, 148
6440, 148

6731,133, 148

6842,77
6939, 148
6977,148
7083, 148
7341,5,19
865,125
868,137
887,134
893,137
894,129
8945, 60
950, 135

Index

177

	Programs
	dhcpd --- DHCP server
	Synopsis
	Description
	Operation
	Command line
	Options
	UDP and TCP ports
	Configuration
	Subnets
	Lease time
	BOOTP support
	Options

	OMAPI
	The lease object
	The host object
	The group object
	The control object
	The failover-state object

	Signals
	Files
	See also
	Copyright

	dhclient --- DHCP client
	Synopsis
	Description
	Operation
	Command line
	Options
	Options available for DHCPv6 only
	Modifying default file locations

	UDP and TCP ports
	Configuration
	OMAPI
	The control object

	Environment variables
	Files
	See also
	Copyright

	dhclient-script --- DHCP client network configuration script
	Description
	Hooks
	Operation
	MEDIUM
	PREINIT
	BOUND
	RENEW
	REBIND
	REBOOT
	EXPIRE
	FAIL
	STOP
	RELEASE
	NBI
	TIMEOUT

	Bugs
	See also
	Copyright

	dhcrelay - DHCP relay agent
	Synopsis
	Description
	Operation
	Options
	Protocol selection
	Specifying DHCPv4/BOOTP servers
	Options available for both DHCPv4 and DHCPv6
	Options available for DHCPv4 only
	Options available for DHCPv6 only

	See also
	Bugs
	Copyright

	omshell --- OMAPI command shell
	Synopsis
	Description
	Local and remote objects
	Opening a connection
	Creating local objects
	Associating local and remote objects
	Viewing a remote object
	Modifying a remote object
	New remote objects
	Resetting attributes
	Refreshing objects
	Deleting objects
	Help
	See also
	Copyright

	Configuration and data
	dhcpd.conf --- DHCP server configuration
	Description
	Examples
	Address pools
	Dynamic address allocation
	IP address conflict prevention
	DHCP failover
	Failover startup
	Configuring failover

	Client classing
	Subclasses
	Per-class limits on dynamic address allocation
	Spawning classes
	Combining match, match if, and spawn with

	Dynamic DNS updates
	The DNS UPDATE scheme
	Dynamic DNS UPDATE security

	Events
	Declarations
	Allow and deny
	allow, deny, and ignore in scope
	allow and deny within pool declarations

	Parameters
	Setting parameter values using expressions
	Reserved leases
	References
	Files
	See also
	Copyright

	dhcpd.leases --- DHCP lease database
	Description
	Format
	Common statements for lease declarations
	Dates
	General variables
	DDNS Variables

	Executable statements
	The DHCPv4 lease declaration
	The DHCPv6 lease (IA) declaration
	The failover peer state declaration
	Files
	See also
	Copyright

	dhclient.conf --- DHCP client configuration
	Description
	Protocol timing
	DHCPv6 lease selection
	Lease requirements and requests
	Dynamic DNS updates
	Option modifiers
	Lease declarations
	Alias declarations
	Other declarations
	Example
	Files
	See also
	Copyright

	dhclient.leases --- DHCP client lease database
	Description
	Files
	See also
	Copyright

	dhcp-eval --- DHCP conditional evaluation
	Description
	Conditional behavior
	The if statement
	The switch statement

	Boolean expressions
	Data expressions
	Numeric expressions
	Action expression
	Dynamic DNS updates
	See also
	Copyright

	dhcp-options --- DHCP options
	Description
	Option statements
	Setting option values using expressions
	Standard DHCPv4 options
	Relay agent information option
	Client FQDN suboptions
	NetWare/IP suboptions
	Standard DHCPv6 options
	Accessing DHCPv6 relay options
	Defining new options
	Boolean
	Integer
	IPv4 address
	IPv6 address
	Text
	Data string
	Domain list
	Encapsulation
	Arrays
	Records

	Vendor encapsulated options
	See also
	Copyright

	Release notes
	Lease 1.99.6
	Lease version numbering scheme
	Stable and development versions

	Lease branches
	History of Lease

	License
	Data and privacy
	Index

